<span>To answer this problem, we use balancing of forces: x and y components to determine the tension of the rope.
First, the vertical component of tension (Tsin theta) is equal to the weight of the object.
T * sin θ = mg =</span> 1.55 * 9.81 <span>
T * sin θ = 15.2055
Second, the horizontal component of tension (t cos theta) is equal to the force of the wind.
T * cos θ = 13.3
Tan θ = sin </span>θ / cos θ = 15.2055/13.3 = 1.143
we can find θ that is equal to 48.82.
T then is equal to 20.20 N
Answer:
probably B
Explanation:
it's not their job to sort out the cost of cleaning it up or worry about the public opinion. they should only make sure it doesn't happen again so they should find out why it happened
Answer:
(A) Angular speed 40 rad/sec
Rotation = 50 rad
(b) 37812.5 J
Explanation:
We have given moment of inertia of the wheel 
Initial angular velocity of the wheel 
Angular acceleration 
(a) We know that 
We have given t = 2 sec
So 
Now 
(b) After 3 sec 
We know that kinetic energy is given by 
The initial kinetic energy of the boat and its rider is

After Sam stops it, the final kinetic energy of the boat+rider is

because its final velocity is zero.
For the law of conservation of energy, the work done by Sam is the variation of kinetic energy of the system:

where the negative sign is due to the fact that the force Sam is applying goes against the direction of motion of the boat.
Answer:
1. Just because it is small doesn't mean it needs to be excluded. If that were the case I would've been out of my friend group a while ago
2. Look at it it's fricking beautiful (see attachment)
3. It is just a great planet I don't think there needs to be any reason given I meannn you agree?
4. There's no other reason needed it's fricking gorgeous and amazing it needs no other reason. It needs a freaking
opening announcement to announce the arrival of the gorgeouness.