<h3><u>Answer;</u></h3>
The above statement is False
<h3><u>Explanation;</u></h3>
- Decreased output from the vasomotor center allows arterioles and veins to dilate.
- The vasomotor center controls vessel tone or contraction of the smooth muscle in the tunica media.It is responsible for central regulation of cardiac electrical activity, myocardial performance, and peripheral vascular tone.
- Changes in diameter affect peripheral resistance, pressure, and flow, which in turn affect cardiac output.
Explanation:
If g= 10m/s²
Then 75kg=75×10=750N
Since Work =Force ×Distance
Work=750×30
=22500J
And Power°=Work÷time
=22500÷120
=187.5W
By definition, the refractive index is
n = c/v
where c = 3 x 10⁸ m/s, the speed of light in vacuum
v = the speed of light in the medium (the liquid).
The frequency of the light source is
f = (3 x 10⁸ m/s)/(495 x 10⁻⁹ m) = 6.0606 x 10¹⁴ Hz
Because the wavelength in the liquid is 434 nm = 434 x 10⁻⁹ m,
v = (6.0606 x 10¹⁴ 1/s)*(434 x 10⁻⁹ m) = 2.6303 x 10⁸ m/s
The refractive index is (3 x 10⁸)/(2.6303 x 10⁸) = 1.1406
Answer: a. 1.14
Answer:
8 Hz, 48 Hz
Explanation:
The standing waves on a string (or inside a pipe, for instance) have different modes of vibrations, depending on how many segments of the string are vibrating.
The fundamental frequency of a standing wave is the frequency of the fundamental mode of vibration; then, the higher modes of vibration are called harmonics. The frequency of the n-th harmonic is given by

where
is the fundamental frequency
In this problem, we know that the wave's third harmonic has a frequency of

This means this is the frequency for n = 3. Therefore, we can find the fundamental frequency as:

Now we can also find the frequency of the 6-th harmonic using n = 6:
