From question,
(140-x)/7+70=120
Or, (140-x)/7=120-70
Or,140-x=50X7
Or, -x=350-140
Or, -x=210
:• x = -210 answers
Answer:
To figure out the common denominator for these fractions, I'll first need to factor that quadratic in the denominator on the right-hand side of the rational equation. This will also allow me to find the disallowed values for this equation. Factoring gives me:
x2 – 6x + 8 = (x – 4)(x – 2)
The factors of the quadratic on the right-hand side "just so happen" to be duplicates of the other denominators. This often happens in these exercises. (So often, in fact, that if you get completely different factors, you should probably go back and check your work.)
Step-by-step explanation:
Answer:
1
Step-by-step explanation:
9-8=1
Hope that this is helpful.
Have a nice day.
Answer:
I is clear that, the linear equation
has no solution.
Step-by-step explanation:
<u>Checking the first option:</u>










<u>Checking the 2nd option:</u>







<u>Checking the 3rd option:</u>









<u>Checking the 4th option:</u>










Result:
Therefore, from the above calculations it is clear that, the linear equation
has no solution.
The rate at which the water from the container is being drained is 24 inches per second.
Given radius of right circular cone 4 inches .height being 5 inches, height of water is 2 inches and rate at which surface area is falling is 2 inches per second.
Looking at the image we can use similar triangle propert to derive the relationship:
r/R=h/H
where dh/dt=2.
Thus r/5=2/5
r=2 inches
Now from r/R=h/H
we have to write with initial values of cone and differentiate:
r/5=h/5
5r=5h
differentiating with respect to t
5 dr/dt=5 dh/dt
dh/dt is given as 2
5 dr/dt=5*-2
dr/dt=-2
Volume of cone is 1/3 π
We can find the rate at which the water is to be drained by using partial differentiation on the volume equation.
Thus
dv/dt=1/3 π(2rh*dr/dt)+(
*dh/dt)
Putting the values which are given and calculated we get
dv/dt=1/3π(2*2*2*2)+(4*2)
=1/3*3.14*(16+8)
=3.14*24/3.14
=24 inches per second
Hence the rate at which the water is drained from the container is 24 inches per second.
Learn more about differentaiation at brainly.com/question/954654
#SPJ4