1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetoff [14.1K]
2 years ago
13

Desperate for helllppp pls

Mathematics
1 answer:
beks73 [17]2 years ago
7 0

Answer:

  • B) - 1 < x < - 0.2

Step-by-step explanation:

<h3>Given inequality</h3>

  • |5x + 3| < 2

The LHS is absolute value so we look at two options:

<h3>Option 1</h3>

5x + 3 is positive, then the inequality becomes:

  • 5x + 3 < 2
  • 5x < 2 - 3
  • 5x < - 1
  • x < - 1/5 or x < - 0.2

<h3>Option 2</h3>

5x + 3 is negative, then the inequality becomes:

  • - (5x + 3) < 2
  • 5x + 3 > - 2
  • 5x > - 2 - 3
  • 5x > - 5
  • x > - 1

The solution is the combination of the two intervals:

  • x > - 1 and x < - 0.2 ⇒ - 1 < x < - 0.2

Correct choice is B

You might be interested in
Solve these linear equations by Cramer's Rules Xj=det Bj / det A:
timurjin [86]

Answer:

(a)x_1=-2,x_2=1

(b)x_1=\frac{3}{4} ,x_2=-\frac{1}{2} ,x_3=\frac{1}{4}

Step-by-step explanation:

(a) For using Cramer's rule you need to find matrix A and the matrix B_j for each variable. The matrix A is formed with the coefficients of the variables in the system. The first step is to accommodate the equations, one under the other, to get A more easily.

2x_1+5x_2=1\\x_1+4x_2=2

\therefore A=\left[\begin{array}{cc}2&5\\1&4\end{array}\right]

To get B_1, replace in the matrix A the 1st column with the results of the equations:

B_1=\left[\begin{array}{cc}1&5\\2&4\end{array}\right]

To get B_2, replace in the matrix A the 2nd column with the results of the equations:

B_2=\left[\begin{array}{cc}2&1\\1&2\end{array}\right]

Apply the rule to solve x_1:

x_1=\frac{det\left(\begin{array}{cc}1&5\\2&4\end{array}\right)}{det\left(\begin{array}{cc}2&5\\1&4\end{array}\right)} =\frac{(1)(4)-(2)(5)}{(2)(4)-(1)(5)} =\frac{4-10}{8-5}=\frac{-6}{3}=-2\\x_1=-2

In the case of B2,  the determinant is going to be zero. Instead of using the rule, substitute the values ​​of the variable x_1 in one of the equations and solve for x_2:

2x_1+5x_2=1\\2(-2)+5x_2=1\\-4+5x_2=1\\5x_2=1+4\\ 5x_2=5\\x_2=1

(b) In this system, follow the same steps,ust remember B_3 is formed by replacing the 3rd column of A with the results of the equations:

2x_1+x_2 =1\\x_1+2x_2+x_3=0\\x_2+2x_3=0

\therefore A=\left[\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right]

B_1=\left[\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right]

B_2=\left[\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right]

B_3=\left[\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right]

x_1=\frac{det\left(\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)} =\frac{1(2)(2)+(0)(1)(0)+(0)(1)(1)-(1)(1)(1)-(0)(1)(2)-(0)(2)(0)}{(2)(2)(2)+(1)(1)(0)+(0)(1)(1)-(2)(1)(1)-(1)(1)(2)-(0)(2)(0)}\\ x_1=\frac{4+0+0-1-0-0}{8+0+0-2-2-0} =\frac{3}{4} \\x_1=\frac{3}{4}

x_2=\frac{det\left(\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)} =\frac{(2)(0)(2)+(1)(0)(0)+(0)(1)(1)-(2)(0)(1)-(1)(1)(2)-(0)(0)(0)}{4} \\x_2=\frac{0+0+0-0-2-0}{4}=\frac{-2}{4}=-\frac{1}{2}\\x_2=-\frac{1}{2}

x_3=\frac{det\left(\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)}=\frac{(2)(2)(0)+(1)(1)(1)+(0)(1)(0)-(2)(1)(0)-(1)(1)(0)-(0)(2)(1)}{4} \\x_3=\frac{0+1+0-0-0-0}{4}=\frac{1}{4}\\x_3=\frac{1}{4}

6 0
4 years ago
Can some one help me asap
zavuch27 [327]
It'd be easier to do #18 if y ou were to break it up:

                                                        14* (first term + 14th term)
Sum from n=1 to 14 of n =  S      = ---------------------------------
                                               14                       2
                                    
     14(1+14)
= ---------------- = 7(15) = 105 
           2

The sum of twice that is 210.  The sum of "1 from n=1 to n=14" is just 14.

The final sum is 210 + 14 = 224 (answer)
4 0
3 years ago
The cost of tuition at a 2 year school is $11,000 per academic year. Ming is eligible for $9,500 in financial aid to cover tuiti
goldenfox [79]

Answer:

$125

Step-by-step explanation:

11,000 - 9,500 = 1,500

1,500 / 12 = 125 (we use 12 because 12 months = 1 year)

8 0
3 years ago
Read 2 more answers
What is the answer? <br><br><br> A: 5/20<br><br> B:5/11<br><br> C: 19/20<br><br> D: 1 9/20
Kaylis [27]
The answer is D.
Find common factors of denominators.
15+10+4/20= 29/20= 1 9/20 :)
7 0
4 years ago
PLEASE HELP
UNO [17]
6.3-4.6=1.7%. You subtract the percentages to find the total percentage after the percentage dropped 4.6 from 6.3
4 0
3 years ago
Other questions:
  • John spends 1 hour making birthday cards. If each birthday card takes 3 minutes to make, how many birthday cards can John make?
    7·2 answers
  • There are 12 pens and 24 pencils in the container consider this statement for every 2 pens there are 4 pencils do you agree with
    14·2 answers
  • Find arc length CDE geometry ​
    8·1 answer
  • Multiply using mental math 50×28
    12·2 answers
  • Which statement describes the first step to solve the equation by completing the square?
    10·1 answer
  • PLEASE HELP ME! It’s easy I just don’t remember.
    13·1 answer
  • The number of tourists visiting a city doubles every month during the two-month period beginning in Jan. 1st and ending in Feb.
    9·1 answer
  • I NEED SOMEONE TO HELP ME WITH MY TEST ITS ONLY 8 QUESTIONS. PLEASE PLEASE HELP HELP
    7·2 answers
  • Im doing my final. Answer and you get whatever you want.
    15·1 answer
  • The ratio of bOYS to giris
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!