Answer:
Map and avoid high-risk zones.
Build hazard-resistant structures and houses.
Protect and develop hazard buffers (forests, reefs, etc.)
Develop culture of prevention and resilience.
Improve early warning and response systems.
Build institutions, and development policies and plans.
Explanation:
Answer:
The condition does not hold for a compression test
Explanation:
For a compression test the engineering stress - strain curve is higher than the actual stress-strain curve and this is because the force needed in compression is higher than the force needed during Tension. The higher the force in compression leads to increase in the area therefore for the same scale of stress the there is more stress on the Engineering curve making it higher than the actual curve.
<em>Hence the condition of : on the same scale for stress, the tensile true stress-true strain curve is higher than the engineering stress-engineering strain curve.</em><em> </em>does not hold for compression test
Answer:
If a truss buckles or overturns, it is usually because of the failure of an adjacent truss or its bracing. A steel truss in a fire may buckle and overturn because of expansion or weakening from the heat. Most truss failures are the result of broken connections. Photo 1 shows a set of parallel-chord wood trusses supporting a plywood floor deck.
Explanation:
Answer:
Numbers 4, 6, & 7 are correct
Explanation:
4- this allows the op amp to have zero voltage so that maximum voltage is transferred to output load.
6- this ensures that op amp doesn't cause loading in the original circuit, high input impedance would not deter the circuit from pulling current from it.
7- high difference between upper and lower frequencies.