Answer:
a) The planar defect that exists is twin boundary defect.
b) The planar defect that exists is the stacking fault.
Explanation:
I am using bold and underline instead of a vertical line.
a. A B C A B <u>C</u><u> </u>B A C B A
In this stacking sequence, the planar defect that occurs is twin boundary defect because the stacking sequence at one side of the bold and underlined part of the sequence is the mirror image or reflection of the stacking sequence on the other side. This shows twinning. Hence it is the twin boundary inter facial defect.
b. A B C A <u>B C B C</u> A B C
In this stacking sequence the planar defect that occurs is which occurs is stacking fault defect. This underlined region is HCP like sequence. Here BC is the extra plane hence resulting in the stacking fault defect. The fcc stacking sequence with no defects should be A B C A B C A B C A B C. So in the above stacking sequence we can see that A is missing in the sequence. Instead BC is the defect or extra plane. So this disordering of the sequence results in stacking fault defect.
Answer:
125 cm³/min
Explanation:
The material rate of removal is usually given by the formula
Material Rate of Removal = Radial Depth of Cut * Axial Depth of Cut * Feed Rate, where
Radial Depth of Cut = 25 mm
Axial depth of cut = 200 mm
Feed rate = 25 mm/min
On multiplying all together, we will then have
MRR = 25 mm * 200 mm * 25 mm/min
MRR = 125000 mm³/min
Or we convert it to cm³/min and have
MRR = 125000 mm³/min ÷ 1000
MRR = 125 cm³/min
True I think I’m not sure?