Answer:
(a) Precipitation hardening - 1, 2, 4
(b) Dispersion strengthening - 1, 3, 5
Explanation:
The correct options for each are shown as follows:
Precipitation hardening
From the first statement; Dislocation movement is limited by precipitated particles. This resulted in an expansion in hardness and rigidity. Precipitates particles are separated out from the framework after heat treatment.
The aging process occurs in the second statement; because it speaks volumes on how heated solutions are treated with alloys above raised elevated temperature. As such when aging increases, there exists a decrease in the hardness of the alloy.
Also, for the third option for precipitation hardening; This cycle includes the application of heat the alloy (amalgam) to a raised temperature, maintaining such temperature for an extended period of time. This temperature relies upon alloying components. e.g. Heating of steel underneath eutectic temperature. Subsequent to heating, the alloy is extinguished and immersed in water.
Dispersion strengthening
Here: The effect of hearting is not significant to the hardness of alloys hardening by the method in statement 3.
In statement 5: The process only involves the dispersion of particles and not the application of heat.
Answer:
<em>Technician B says that a ratchet is used to loosen fasteners that are very tight.</em>
Explanation:
A ratchet is a common wrench device with a fastener component. A ratchet wrench is an essential tool that is used to fasten or loosen nuts and bolts.
Answer:

Explanation:
speed of motor (N)=1500 rpm
power=4 hp =
=2.9828 KW
service factor(k)= 2.75
now,


torque rating

Answer:
Boyle's Law simply describes the relationship between the pressure and volume of an enclosed gas when Temperature remains constant. Tripling the pressure will reduce its volume to 1/3, and so on. Alternatively, if you double the volume available to an enclosed gas, pressure is halved.
Explanation:
Answer:
428°F
Explanation:
The equation to convert degrees Celsius to degrees fahrenheit is
°F (degrees fahrenheit) = (9/5 * °C (degrees celsius) ) + 32
°F = (9/5 * 220 °C (degrees celsius)) +32 = 428 °F (degrees fahrenheit)