Answer:
Check the explanation
Explanation:
Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in

1x0.723x
=3x0.780x
⇒
= 426.4 °K
The initail volumes of the gases can be determined by the ideal gas equation of state,
=
= 0.201
The equilibrium pressure of the gases can also be obtained by the ideal gas equation

= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4
(0.201+1.275)
= 246.67 KPa = 2.47 bar
The load is 17156 N.
<u>Explanation:</u>
First compute the flexural strength from:
σ = FL / π
= 3000
(40
10^-3) / π (5
10^-3)^3
σ = 305
10^6 N / m^2.
We can now determine the load using:
F = 2σd^3 / 3L
= 2(305
10^6) (15
10^-3)^3 / 3(40
10^-3)
F = 17156 N.
A. AFGI is the answer for this question.
Answer:
β =
= 0.7071 ≈ 1 ( damping condition )
closed-form expression for the response is attached below
Explanation:
Given : x + 2x + 2x = 0 for Xo = 0 mm and Vo = 1 mm/s
computing a solution :
M = 1,
c = 2,
k = 2,
Wn =
=
next we determine the damping condition using the damping formula
β =
= 0.7071 ≈ 1
from the condition above it can be said that the damping condition indicates underdamping
attached below is the closed form expression for the response