When a candle is burning the candle is releasing thermal and radiant energy
A hypothesis can be described as an intelligent guess
Answer:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Explanation:
For this case we know the mass of the water given :

And we know that the initial temperature for this water is
.
We want to cool this water to the human body temperature 
Since the temperatures given are not near to 0C (fusion point) or 100C (the boling point) we don't need to use latent heat, then the only heat involved for this case is the sensible heat given by:

Where
represent the specific heat for the water and this value from tables we know that
for the water.
So then we have everything in order to replace into the formula of sensible heat and we got:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Answer:
The x-component and y-component of the velocity of the cruise ship relative to the patrol boat is -5.29 m/s and 0.18 m/s.
Explanation:
Given that,
Velocity of ship = 2.00 m/s due south
Velocity of boat = 5.60 m/s due north
Angle = 19.0°
We need to calculate the component
The velocity of the ship in term x and y coordinate


The velocity of the boat in term x and y coordinate
For x component,

Put the value into the formula


For y component,

Put the value into the formula


We need to calculate the x-component and y-component of the velocity of the cruise ship relative to the patrol boat
For x component,

Put the value into the formula


For y component,

Put the value into the formula


Hence, The x-component and y-component of the velocity of the cruise ship relative to the patrol boat is -5.29 m/s and 0.18 m/s.
We shall consider two properties:
1. Temperature difference
2. Thermal conductivity of the material
Use a cylindrical rod of a given material (say steel) which is insulated around its circumference.
One end of the rod is dipped in a large reservoir of water at 100 deg.C and the other end is dipped in water (with known volume) at 40 deg. C. The cold water if stored in a cylinder which is insulated on all sides. A thermometer reads the temperature of the cold water as a function of time.
This experiment will show that
(a) heat flows from a region of high temperature to a region of lower temperature.
(b) The thermal energy of a body increases when heat is added to it, and its temperature will rise.
(c) The thermal conductivity of water determines how quickly its temperature will rise. If mercury replaces water in the cold cylinder, its temperature will rise at a different rate because its thermal conductivity is different.