Hi there!
In this instance, the object spinning in a horizontal circle will experience a net force in the horizontal direction due to tension.
The net force is equivalent to the centripetal force, so:
∑F = T
mv²/r = T
Solve for v:
v = √rT/m
v = 13.96 m/s
The answer is “Impulse acting on it” according to the impulse-momentum theorem.
Answer:
Explanation:
The volume of a sphere is:
V = 4/3 * π * a^3
The volume charge density would then be:
p = Q/V
p = 3*Q/(4 * π * a^3)
If the charge density depends on the radius:
p = f(r) = k * r
I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.
Since p = k*r
Q = p*π^2*r^3 / 2
Then:
p(r) = 2*Q / (π^2*r^3)
Answer:
The answer is Letter B The car travel at a constant veloc