<h2>
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.</h2>
Explanation:
One period means time taken to complete one revolution.
In case of swings in one period time it travels the same position through two times.
Here we need to find how many times does the child swing through the swing's equilibrium position during the course of 3 period(s) of motion.
For 1 period = 2 times
For 3 periods = 3 x For 1 period
For 3 periods = 3 x 2 times
For 3 periods = 6 times
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.
Answer:
Option A
Explanation:
This can be explained based on the conservation of energy.
The total mechanical energy of the system remain constant in the absence of any external force. Also, the total mechanical energy of the system is the sum of the potential energy and the kinetic energy associated with the system.
In case of two stones thrown from a cliff one vertically downwards the other vertically upwards, the overall gravitational potential energy remain same for the two stones as the displacement of the stones is same.
Therefore the kinetic energy and hence the speed of the two stones should also be same in order for the mechanical energy to remain conserved.
It hardens because you are pressing it against something.
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.