Answer:
Capacitance of the second capacitor = 2C
Explanation:

Where A is the area, d is the gap between plates and ε₀ is the dielectric constant.
Let C₁ be the capacitance of first capacitor with area A₁ and gap between plates d₁.
We have

Similarly for capacitor 2

Capacitance of the second capacitor = 2C
Answer:
Properties of semiconductors are determined by the energy gap between valence and conduction bands. To understand, what is semiconductor, we have to define these terms. In solid-state physics, the energy gap or the band gap is an energy range between valence band and conduction band where electron states are forbidden.
Answer:
Technician A and Technician B both are right.
Explanation:
In an AC alternator, there are two windings
1. Stator winding (stationary)
2. Rotor winding (rotating)
The current is induced in the stationary coils due to the magnetic field produced by the rotor. The DC suppy is provided to the rotor winding via slip rings and brushes and a voltage regulator precisely controls this supply to control the current flow through the rotor.
Therefore, both technicians are right.
(a) Let's convert the final speed of the car in m/s:

The kinetic energy of the car at t=19 s is

(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:

But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into

(c) The instantaneous power is given by

where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:

And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s: