1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
3 years ago
7

Unimpressed with your previous stunt, the director of the new James

Physics
1 answer:
Lyrx [107]3 years ago
8 0

Answer:

The minimum acceleration his partner will need in order to catch Bond before he hits the water is 25.688 meters per square second.

Explanation:

Let be the initial position of the sppedboat the reference location, James Bond jumps horizontally and experiments a parabolic motion, which consists in a horizontal motion at constant velocity and an vertical uniform accelerated motion due to gravity.

Speedboat must accelerate from rest and get Bond at right location and instant. Now we describe the appropriate equations of motion for James Bond and for the speedboat:

James Bond

x_{B} = x_{B,o} + v_{B,o,x} \cdot t

y_{B} = y_{B,o} + v_{B, o, y}\cdot t + \frac{1}{2}\cdot g \cdot t^{2}

Speedboat

x_{S} = x_{S,o}+v_{S,o}\cdot t + \frac{1}{2}\cdot a_{S}\cdot t^{2}

Where:

x_{B,o}, x_{S,o} - Initial horizontal positions for James Bond and the speedboat, measured in meters.

x_{B}, x_{S} - Current horizontal positions for James Bond and the speedboat, measured in meters.

v_{B,o,x}, v_{S,o} - Initial horizontal velocities of James Bond and the speedboat, measured in meters per second.

v_{B,o, y} - Initial vertical velocity of James Bond, measured in meters per second.

t - Time, measured in seconds.

g - Gravitational acceleration, measured in meters per square second.

a_{S} - Acceleration of the speedboat, measured in meters per square second.

We must observe the following conditions such as we may calculate the minimum acceleration of the speedboat:

1) x_{B} = x_{S}

2) y_{B} = 0\,m

Now, if we know that x_{B,o} = 60\,m, x_{S,o} = 0\,m, y_{B, o} = 18\,m, y_{B} = 0\,m, v_{B,o, x} = -6.7\,\frac{m}{s}, v_{S,o} = 0\,\frac{m}{s}, v_{B,o,y} = 0\,\frac{m}{s} and g = -9.807\,\frac{m}{s^{2}}, the resulting system of equations is:

60\,m +\left(-6.7\,\frac{m}{s} \right)\cdot t = 0\,m +\left(0\,\frac{m}{s} \right)\cdot t +\frac{1}{2}\cdot a_{S}\cdot t^{2}

\frac{1}{2}\cdot a_{S}\cdot t^{2} +\left(6.7\,\frac{m}{s} \right)\cdot t -60\,m = 0 (Eq. 1)

0\,m = 18\,m +\left(0\,\frac{m}{s} \right)\cdot t +\frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot t^{2}

\frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot t^{2}+18\,m = 0 (Eq. 2)

At first we get the time from (Eq. 2) by using the Quadratic Formula:

t_{1} \approx 1.916\,s and t_{2}\approx -1.916\,s

Only the first root is physically reasonable. (t\approx 1.916\,s)

Then, we substitute time in (Eq. 1) and clear the acceleration of the speedboat:

\frac{1}{2}\cdot a_{S}\cdot (1.916\,s)^{2} +\left(6.7\,\frac{m}{s} \right)\cdot (1.916\,s) -60\,m = 0

1.836\cdot a_{S}-47.163\,m = 0

a_{S} = 25.688\,\frac{m}{s^{2}}

The minimum acceleration his partner will need in order to catch Bond before he hits the water is 25.688 meters per square second.

You might be interested in
The _____ is about determining if you are the way you are because of your
REY [17]

Answer: nature versus nurture debate

Explanation:

3 0
3 years ago
Given that the distance from the left end of the string to the first antinode is 27.5 cm , calculate the wavelength of the stand
ivolga24 [154]

Answer:

= 0.55 m

Explanation:

A standing wave is characterized by anti-nodes and nodes.

Antinodes are points on a standing wave at maximum amplitude, while nodes are points on the standing wave that are stationary and have zero amplitude.

The distance between two adjacent nodes or two adjacent anti-nodes is equivalent to half the wavelength.

Therefore, in this case the half wavelength is 27.5 cm.

Thus, wavelength = 27.5 × 2

                              = 55 cm

                             <u>= 0.55 m</u>

6 0
3 years ago
What is the fastest motion that can be measured in any frame of reference?
Furkat [3]

Answer: The answer is D: 300,000km/s

Explanation:

7 0
2 years ago
A gray kangaroo can bound across level ground with each jump carrying it 9.1 m from the takeoff point. Typically the kangaroo le
Alona [7]

Answer:

u = 10.63 m/s

h = 1.10 m

Explanation:

For Take-off speed ..

by using the standard range equation we have

R = u² sin2θ/g

R = 9.1 m

θ = 26º,

Initial velocity = u

solving for u

u² = \frac{Rg}{sin2\theta}

u^2 = \frac{9.1 x 9.80}{sin26}

u^2 = 113.17

u = 10.63 m/s

for Max height

using the standard h(max) equation ..

v^2 = (v_osin\theta)^2 -2gh

h =\frac{(v_o^2sin\theta)^2}{2g}

h  =  \frac{(113.17)(sin26)^2}{(2 x 9.80)}}

h = 1.10 m

7 0
3 years ago
Your brother is insisting that you’ll never hear a sound produced behind a barrier wall at the end of your yard you notice that
Tresset [83]

Answer

D.Diffraction

Explanation

Diffraction is a property that is experienced by waves when they come across a barrier when they are in motion.

The ways tends to curve behind the barrier. This is called diffraction of waves.

Now, sound is a wave and it also experience diffraction. . So the brother will be able to hear the sound due to diffraction

8 0
3 years ago
Read 2 more answers
Other questions:
  • When energy is transferred from the air to the water, what happens to most of the energy?
    12·2 answers
  • What is the density of the object that has a mass 13.87g and a volume of 31.75cm3?​
    9·1 answer
  • What is the fundamental source of electromagnetic radiation?
    6·1 answer
  • When walking barefoot, Kevin can walk across the grass easily, but when he crosses the paved street, the street is hot and burns
    7·1 answer
  • Using the knowledge you gained from your lessons and from this practical exercise, this engine appears to be a
    5·1 answer
  • A wave has frequency of 50 Hz and a wavelength of 10 m. What is the speed of the wave?
    9·1 answer
  • a train travels 99 kilometers in 3 hours, and then 80 kilometers in 5 hours. What is it’s average speed?
    8·1 answer
  • A systematic error in data is called
    9·1 answer
  • Complete combustion of 1.11 0 g of a gaseous hydrocarbon yields 3.613 g of carbon dioxide and one 1.109 g of water. 80.288 g sam
    6·1 answer
  • As fuel is burned in an electrical generator, the chemical energy of the fuel is converted into thermal energy that is used to b
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!