Answer:
See explanation
Explanation:
The magnetic force is
F = qvB sin θ
We see that sin θ = 1, since the angle between the velocity and the direction of the field is 90º. Entering the other given quantities yields
F
=
(
20
×
10
−
9
C
)
(
10
m/s
)
(
5
×
10
−
5
T
)
=
1
×
10
−
11
(
C
⋅
m/s
)
(
N
C
⋅
m/s
)
=
1
×
10
−
11
N
Answer:
The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3
Heat flux is 9.67×10^7 Btu/hrft^2
Explanation:
Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr
Area (A) = πD^2/4
Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft
A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2
Volume (V) = A × Length
L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft
V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3
Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3
Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2
Answer:

Explanation:
From the question we are told that:
Incremental resistance 
Resistor Feed 
Supply Change 
Generally the equation for voltage rate of change is mathematically given by

Therefore


