B.) An unstructured, chaotic life
Answer:
Answer explained below
Explanation:
The following is the nested if-else statement:
% if-based statement
if num < -2 || num > 4
f1(num)
else
if num <=2
if num >= 0
f2(num)
else
f3(num)
end
else
f4(num)
end
end
<u>NOTE:</u> the num is an integer variable that has been initialized and that there are functions f1, f2, f3 and f4.
The nested if-else statement can be replaced by switch statement as shown below:
switch num
case(0, 1, 2)
f2(num)
case(-2, -1)
f3(num)
case(3, 4)
f4(num)
otherwise
f1(num)
In this case, the switch based code is easier to write and understand because the cases are single valued or a few discrete values (not ranges of values)
Answer:
the minimum component thickness for which the condition of plane strain is valid is 0.005377 m or 5.38 mm
Explanation:
Given the data in the question;
yield strength σ
= 690 Mpa
plane strain fracture toughness K
= 32 MPa-
minimum component thickness for which the condition of plane strain is valid = ?
Now, for plane strain conditions, the minimum thickness required is expressed as;
t ≥ 2.5( K
/ σ
)²
so we substitute our values into the formula
t ≥ 2.5( 32 / 690 )²
t ≥ 2.5( 0.0463768 )²
t ≥ 2.5 × 0.0021508
t ≥ 0.005377 m or 5.38 mm
Therefore, the minimum component thickness for which the condition of plane strain is valid is 0.005377 m or 5.38 mm
Answer: the absolute static pressure in the gas cylinder is 82.23596 kPa
Explanation:
Given that;
patm = 79 kPa, h = 13 in of H₂O,
A sketch of the problem is uploaded along this answer.
Now
pA = patm + 13 in of H₂O ( h × density × g )
pA= 79 + (13 × 0.0254 × 9.8 × 1000/1000)
pA = 82.23596 kPa
the absolute static pressure in the gas cylinder is 82.23596 kPa
Answer:
1) 
2) 
Explanation:
For isothermal process n =1

![V_o = \frac{5}{[\frac{72}{80}]^{1/1} -[\frac{72}{180}]^{1/1}}](https://tex.z-dn.net/?f=V_o%20%20%3D%20%5Cfrac%7B5%7D%7B%5B%5Cfrac%7B72%7D%7B80%7D%5D%5E%7B1%2F1%7D%20-%5B%5Cfrac%7B72%7D%7B180%7D%5D%5E%7B1%2F1%7D%7D)

calculate pressure ratio to determine correction factor

correction factor for calculate dpressure ration for isothermal process is
c1 = 1.03

b) for adiabatic process
n =1.4
volume of hydraulic accumulator is given as
![V_o =\frac{\Delta V}{[\frac{p_o}{p_1}]^{1/n} -[\frac{p_o}{p_2}]^{1/n}}](https://tex.z-dn.net/?f=V_o%20%3D%5Cfrac%7B%5CDelta%20V%7D%7B%5B%5Cfrac%7Bp_o%7D%7Bp_1%7D%5D%5E%7B1%2Fn%7D%20-%5B%5Cfrac%7Bp_o%7D%7Bp_2%7D%5D%5E%7B1%2Fn%7D%7D)
![V_o = \frac{5}{[\frac{72}{80}]^{1/1.4} -[\frac{72}{180}]^{1/1.4}}](https://tex.z-dn.net/?f=V_o%20%20%3D%20%5Cfrac%7B5%7D%7B%5B%5Cfrac%7B72%7D%7B80%7D%5D%5E%7B1%2F1.4%7D%20-%5B%5Cfrac%7B72%7D%7B180%7D%5D%5E%7B1%2F1.4%7D%7D)

calculate pressure ratio to determine correction factor

correction factor for calculate dpressure ration for isothermal process is
c1 = 1.15
