the answer is B your welcome
<u>I have assumed a weight of 120 N on Earth.</u>
Answer:
<em>The object weighs 20 N on the moon</em>
Explanation:
Weight
The weight of an object depends on the mass m of the object and the acceleration of gravity g of the place they are in.
The formula to calculate the weight is:
W = m.g
If g_e is the acceleration of gravity on Earth, and g_m is the acceleration of gravity on the moon, we know:

Dividing by ge:

An object of weight We=120 N on planet Earth has a mass of:

Multiplying by gm:

Substituting the ratio of accelerations of gravity:

Since m.gm is the weight on the Moon Wm:

The object weighs 20 N on the moon
Answer:
When the ball is held motionless above the floor, the ball possesses only GPE energy.If the ball is dropped, its GPE energy decreases as it falls.If the ball is dropped, its KE energy increases as it falls.
Explanation:
If the ball is held motionless, then its kinetic energy is equal to zero, since kinetic energy depends on the velocity. And the ball is held above the ground, which means it possesses gravitational potential energy.
If the ball is dropped, its height will decrease, therefore its gravitational potential energy will decrease. Along the way, the ball will be in free fall, and therefore its velocity will increase, hence its kinetic energy.

As the greater force of tension (by 81N) is exerted by the team on the right the rope will move to the right.
Spinning a marshmallow over a fire is effective maybe if you hang it over the fire and heat it up equally on each side