1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DiKsa [7]
3 years ago
14

Which of the following are found within the electromagnetic spectrum? Check all that apply. sound waves visible light X rays ult

raviolet radiation gamma rays microwave radiation
Physics
1 answer:
sattari [20]3 years ago
8 0

Answer:

Visible light

X rays

ultraviolet radiation

gamma rays

microwave radiation

Explanation:

Electromagnetic waves consist of oscillating electric and magnetic fields which vibrate in a direction perpendicular to the direction of motion of the wave (transverse wave). Electromagnetic waves have all same speed in a vacuum (c=3.0\cdot 10^8 m/s, known as speed of light) and are classified into 7 different types according to their frequency and wavelength. This classification is called electromagnetic spectrum.

From lowest to highest wavelength, the 7 types are:

Gamma rays

X-rays

Ultraviolet radiation

Visible light

Infrared radiation

Microwaves

Radio waves

Sound waves, on the contrary, do not belong to the electromagnetic spectrum, since they are another type of wave called mechanical waves (which consist of vibrations of the particles in a medium).

You might be interested in
Mirrors produce images by doing which of the following to light?
Gemiola [76]

Answer: C

Reflection

Explanation: Light travels in a straight line. Reflection is one of the properties of light. And this is the property in which mirror make use of. The ability of light to bounce back. It's this bouncing back characteristics of light ray that eventually produce the image of an object by the mirror.

If the light ray is absorbed, no image will be produced.

4 0
3 years ago
Evan drew a diagram to illustrate radiation
labwork [276]
The answer would be D, electromagnetic waves
8 0
2 years ago
Read 2 more answers
A runner drank a lot of water during a race. What is the expected path of the extra filtered water molecules?
Naddika [18.5K]

Answer:

Afferent arteriole, glomerulus, nephron tubule, collecting duct

Explanation:

Blood enters the kidney through the renal artery, a thick branch from the descending aorta. In the hilum, it is divided into several branches that are distributed through the lobes of the kidney and are branching forming numerous afferent arterioles that form the glomerular clew. It is precisely the walls of these capillaries that act as ultrafilters, allowing small particles to pass through.

Blood that flows through the <u>afferent arteriole</u> circulates through the capillary vessels of the kidney (the true capillaries that provide the kidney with oxygen and nutrients necessary for its function). These capillaries are grouped together to form the renal vein which, in turn, pours into the inferior vena cava.

Given the function of the kidneys to eliminate waste products through urine, it is not surprising that these organs are the ones that receive the most blood per gram of weight. One way to express renal blood flow is by considering the renal fraction or fraction of cardiac output that passes through the kidneys.

The regulation of blood flow in the glomeruli is achieved by three formations: the polar bearing, the Goormaghtigh cells and the dense macula. The polar bearing consists of a thickening of the afferent arteriole wall before it enters the <u>renal glomerulus</u>. The arteriole loses its elastic membrane, the endothelium becomes discontinuous and the middle tunic is arranged in two layers, formed by secretory cells: these secretory cells produce Angiotensin and Erythropoietin.

Goormaghtigh cells are arranged at an angle between afferent and effector arterioles and meet in small columns. They are closely related to polar bearing cells. Between both formations is the dense macula (or Zimmerman's dense macula) that is in contact with the distal tubule and afferent arteriole just before it penetrates the glomerulus. These three formations, polar bearing, Goormaghtigh cells and dense macula form the juxtaglomerular apparatus that regulates the blood flow in the glomerulus.

<u>Nephrons</u> regulate water and soluble matter (especially Electrolytes) in the body, by first filtering the blood under pressure, and then reabsorbing some necessary fluid and molecules back into the blood while secreting other unnecessary molecules.

The reabsorption and secretion are achieved with the mechanisms of Cotransporte and Contratransporte established in the nephrons and associated collection ducts. Blood filtration occurs in the glomerulus, a capping of capillaries that is inside a Bowman's capsule.

Liquid flows from the nephron in the <u>collecting duct</u> system. This segment of the nephron is crucial to the process of water conservation by the body. In the presence of the antidiuretic hormone (ADH; also called vasopressin), these ducts become water permeable and facilitate their reabsorption, thus concentrating the urine and reducing its volume. Conversely, when the body must remove excess water, for example after drinking excess fluid, ADH production is decreased and the collecting tubule becomes less permeable to water, making the urine diluted and abundant.

6 0
3 years ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
2 years ago
What is described by the terms body-centered cubic and face-centered cubic?
Montano1993 [528]
In physical chemistry, the terms body-centered cubic  (BCC) and face-centered cubic (FCC) refer to the cubic crystal system of a solid. Each solid is made up simple building blocks called lattice units. There are different layouts of a lattice unit.

It is better understood using 3-D models shown in the picture. A BCC unit cell has one lattice point in the center, together with eight corner atoms which represents 1/8 of an atom. Therefore, there are 1+ 8(1/8) = 2 atoms in a BCC unit cell. On the other hand, a FCC unit cell is composed of half of an atom in each of its faces and 1/8 of an atom in its corners. Therefore, there are (1/2)6 + (1/8)8 = 4 atoms in a FCC unit cell.

7 0
3 years ago
Other questions:
  • A scientist finds an unusual object and decides to study it. Which observation indicates that it is a living thing that is multi
    5·2 answers
  • Twenty students were surveyed to find out how many hours of tv they watch during a school week
    9·1 answer
  • A ball is kicked horizontally from the top of a 150 meter tall building. The ball lands 200m from the base of the building. what
    15·1 answer
  • When you lift a book of the ground to your desk, what kind of work do you do, negative or positive?
    5·1 answer
  • Please! Help..! It is really hard for me right know
    8·1 answer
  • A large dog with a mass of 30 kg chases a car at 2 m/s. What is the<br> magnitude of its momentum?
    10·1 answer
  • WILL VOTE MOST BRAINLIEST
    15·1 answer
  • Which equation can correctly express the relation between force, acceleration, and mass?
    11·2 answers
  • The condition required to work to be done​
    5·1 answer
  • Is the process of science described in this lesson similar to your initial ideas about how science is carried out? Explain why o
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!