In series circuit, Req = R₁ + R₂ + R₃ + ···
In parallel circuit, 
<h3>Q7.</h3>
total resistance in the upper branch = R₂ + R₃ = R₂ + 2


R₂ + 2 = 12
R₂ = 10Ω
<h3>Q8.</h3>


Req = 1.7Ω
Answer:
D. The cart is moving at a constant speed or velocity
Explanation:
Equilibrium is a state of body in which it is either at rest or moves with uniform velocity. The sum of forces acting on such a body is always zero and the sum of all the torques acting on it is also zero.
There are two types of equilibrium as follows:
Static Equilibrium: When a body is at rest it is said to be in static equilibrium.
Dynamic Equilibrium: When a body is moving with constant velocity, then it is said to be in dynamic equilibrium.
Hence, the correct option here will be:
<u>D. The cart is moving at a constant speed or velocity</u>
Momentum = mass x velocity, so 500kg x 2m/s = 1000 kg m/s
Answer
2) 1.5×10-2 m
Explanation
The potential difference is related to the electric field by:
(1)
where
is the potential difference
E is the electric field
d is the distance
We want to know the distance the detectors have to be placed in order to achieve an electric field of

when connected to a battery with potential difference

Solving the equation (1) for d, we find
