Answer:
On the Moh's scale of hardness, aluminum oxide is positioned just below to diamond due to which it is considered as one of the hardest known compounds. This also shows that the compound exhibit an enormous amount of lattice energy, as to transform the oxide into its constituent ions, the energy is required to overcome.
Based on the chemical formula of the compound, that is, Al2O3, it is shown that the ions of Al3+ and O2- are kept close due to the activity of the strong electrostatic ionic bonds. The electrostatic forces and the ionic bonding between the ions are extremely robust due to the presence of the ions high charge density. Therefore, to dissociate the bonds, an enormous amount of energy is needed, and at the same time, a high amount of lattice energy is present.
Which of what? I don’t see a picture.
The statement that describes the chemical reaction is D chlorine gas reacts with potassium bromide to form potassium chloride in solution and liquid bromide<span>. The symbol "Cl" represents chlorine. The symbols in the brackets show the physical state of the substance, (g) is gaseous, (s) is solid, (aq) is aqueous and (l) is liquid.</span>
The answer would be
C) To reduce destruction by providing early warning of severe weather
This can help us because then we can plan our day-to-day activities better and can definitely help keep us out of danger.
Answer with Explanation:
A candle relights when a match is held above the wick because its trail of smoke still contains some of the wax. When candles are burned, the heat of the flame turns the the wax (which is originally solid) into liquid (commonly near the wick) and then evaporates as gas. The vaporized wax actually protect the wick and this is the reason why it is not burned. So, when you put off a candle, the vaporized wax is still present near the wick. This, remember, holds heat and light energy. Thus, this explains why the candle can be relighted once you hold a match above the wick. It then allows the match to ignite.
Thus, this explains the answer.