Answer: c
that is the answer
Carbons starting from the left end:
- sp²
- sp²
- sp²
- sp
- sp
Refer to the sketch attached.
<h3>Explanation</h3>
The hybridization of a carbon atom depends on the number of electron domains that it has.
Each chemical bond counts as one single electron domain. This is the case for all chemical bonds: single, double, or triple. Each lone pair also counts as one electron domain. However, lone pairs are seldom seen on carbon atoms.
Each carbon atom has four valence electrons. It can form up to four chemical bonds. As a result, a carbon atom can have up to four electron domains. It has a minimum of two electron domains, with either two double bonds or one single bond and one triple bond.
- A carbon atom with four electron domains is sp³ hybridized;
- A carbon atom with three electron domains is sp² hybridized;
- A carbon atom with two electron domains is sp hybridized.
Starting from the left end (H₂C=CH-) of the molecule:
- The first carbon has three electron domains: two C-H single bonds and one C=C double bond; It is sp² hybridized.
- The second carbon has three electron domains: one C-H single bond, one C-C single bond, and one C=C double bond; it is sp² hybridized.
- The third carbon has three electron domains: two C-C single bonds and one C=O double bond; it is sp² hybridized.
- The fourth carbon has two electron domains: one C-C single bond and one C≡C triple bond; it is sp hybridized.
- The fifth carbon has two electron domains: one C-H single bond and one C≡C triple bond; it is sp hybridized.
Answer:
It means the chemical entity is a radical
Explanation:
When we talk of unsaturation, we are referring to the number of pi-bonds in a chemical entity. The alkane, alkene and alkyne organic family are used to as common examples to explain the term unsaturation.
While alkynes have 3 bonds, it must be understood that they have 2 pi bonds only and as such their degree of saturation is two.
In the case of an alkene, there is only one single pi bond and as such the degree of unsaturation is 1.
Now in this case, we have a fractional 0.5 degree of unsaturation alongside the 3 to make a total of 3.5. So what’s the issue here?
The fractional part shows that the chemical entity we are dealing with here is a radical. While the integer 3 shows that there are 3 pi-bonds, the half pi bond remaining tells us that there is a missing electron on one of the atoms involved in the chemical bonding and as such, the 1/2 extra degree of unsaturation tends to tell us this.
Kindly recall that a radical is a chemical entity within which we have at the least an unpaired electron.
Answer:
[CaCl₂·2H₂O] = 1.43 m
Explanation:
Molality is mol of solute / kg of solvent.
Mass of solvent = 40 g
Let's convert g to kg → 40 g / 1000 = 0.04 kg
Let's determine the moles of solute (mass / molar mass)
8.43 g / 146.98 g/mol = 0.057 mol
Molality = 0.057 mol / 0.04 kg → 1.43