CuCl2 is Dichloride Copper, or Copper II Chloride.
In this Molecule, there is 1 atom of Copper for every 2 atoms of Chlorine.
If you go to the periodic table, you'll see that copper has a mass of 63.5 amu, and the chlorine 35.45 amu.
Which mean that the mass of CuCl2 is 63.5 + 35.45*2 = 63.5 + 70.9 = 134.4 g/mol.
Then, you find the ration of the mass of each atom and multiply by 100.
Ratio of Copper:

and you get about 47.2%
Ration of chlorice (Cl2):

and you get about 52.8%.
So, the percent composition of CuCl2 is 47.2% of Copper and 52.8% of chlorine.
Hope this Helps :)
Given the length of each side of a cube and its mass, the density can be obtained which can then help identify the type of material it's made of. This is because density is a unique and intrinsic property of materials. For this problem, the density is determined to be 10g/cm^3. Looking at a table of densities, the metal is most likely actinium, which has an exact density of 10 g/cm^3.
Answer:
M = 3.0 mol/L.
Explanation:
- We can calculate the molarity of a solution using the relation:
<em>M = (mass x 1000) / (molar mass x V)</em>
- M is the molarity "number of moles of solute per 1.0 L of the solution.
- mass is the mass of the solute (g) (m = 87.75 g of NaCl).
- molar mass of NaCl = 58.44 g/mol.
- V is the volume of the solution (ml) (V = 500.0 ml).
∴ M = (mass x 1000) / (molar mass x V) = (87.75 g x 1000) / (58.44 g/mol x 500.0 ml) = 3.0 mol/L.
Answer:
Explanation:
In theory, not much of anything. The vast majority of nitrates are water soluble. Aside, not sure what chemistry level you are at but you will probably be asked to know or memorize some solubility rules. This, for lack of a better phrase, Nitrate rule, is near spot on. With one exception—a rare one—all metal cationic nitrates are soluble in water. All of them. So, assuming you are talking about aqueous, water-based solutions of these salts and mixing them together, I expect nothing to occur. Both solutions, I believe are colorless in water and will thus remain so. If you had say a solution of Iron (III) nitrate and copper (II) nitrate, slightly different story. Both are colorful solutions and I would think you might see blending of colors but no reaction; no precipitate will form. You will probably learn about markers of a chemical reaction. One of these is a color change. Note, you should read this as a change of color from what you previously had. Going from red to blue or colorless to colored (or vice versa) is a strong indication of a reaction (e. g. evidence of bond-breaking and bond-formation). The mere mixing of colors does not constitute a chemical reaction.