Answer:
The final and initial concentration of the acid and it's conjugate base are approximately equal, that is we use the weak acid approximation.
Explanation:
The Henderson-Hasselbalch is used to calculate the pH of a buffer solution. It depends on the weak acid approximation.
Since the weak acid ionizes only to a small extent, then we can say that [HA] ≈ [HA]i
Where [HA] = final concentration of the acid and [HA]i = initial concentration of the acid.
It also follows that [A^-] ≈ [A^-]i where [A^-] and[A^-]i refer to final and initial concentrations of the conjugate base hence the answer above.
Answer:
0.5 M
Explanation:
From the question given above, the following data were obtained:
Mass of NaOH = 80 g
Volume of solution = 4 L
Molarity =?
Next, we shall determine the number of mole in 80 g of NaOH. This can be obtained as follow:
Mass of NaOH = 80 g
Molar mass of NaOH = 23 + 16 + 1
= 40 g/mol
Mole of NaOH =?
Mole = mass / molar mass
Mole of NaOH = 80 / 40
Mole of NaOH = 2 moles
Finally, we shall determine the molarity of the solution. This can be obtained as follow:
Mole of NaOH = 2 moles
Volume of solution = 4 L
Molarity =?
Molarity = mole / Volume
Molarity = 2/4
Molarity = 0.5 M
Therefore, the molarity of the solution is 0.5 M.
it's the first one. the one with ox in it
Answer:
B. chemical
Explanation:
Chemical change cannot go back to its original form