The mass of atoms of carbon and 3 molecules of hydrogen : 18 g/mol
<h3>Further explanation
</h3>
An atomic mass unit ( amu or "u") is a relative atomic mass of 1/12 the mass of an atom of carbon-12.
The molar mass(molecular mass-formula mass-molecular weight(MW)) of a compound is the sum of the relative atomic mass (Ar) of the constituent elements of the compound
Can be formulated :
M AxBy = (x.Ar A + y. Ar B)
The mass of atom of Carbon(C)⇒Ar = 12 g/mol
The mass of 1 molecule of Hydrogen - H₂(MW) : 2 g/mol
The mass of 3 molecules of Hydrogen : 3 x 2 = 6 g/mol
So the mass of atoms of carbon and 3 molecules of hydrogen :
The pressure gets increased to 486 kPa from 405 kPa, when the volume is decreased from 6 cm³ to 4 cm³.
Explanation:
In the present problem, the temperature is said to remain at constant and there is change in the pressure. So according to Boyle's law, the relationship between pressure and volume of any gaseous objects are inversely related to each other. In other words, the pressure attained by gas molecules in a container will be inversely proportional to the volume of the gas molecules occupied in the container, at constant temperature.
So, if two volumes V₁ and V₂ are considered, then their respective pressure will be represented as P₁ and P₂. Then, as per Boyle's law,
So let us consider, V₁ = 6 cm³ and V₂ = 4 cm³ and pressure P₁ = 405 kPa and we have to determine P₂.
Then,
So, the pressure at new volume of 4 cm³ is 486 kPa. It can be seen that as there is decrease in the volume, there is an increase in the pressure. So it satisfied the Boyle's law.
Thus, the pressure gets increased to 486 kPa from 405 kPa, when the volume is decreased from 6 cm³ to 4 cm³.
The lower you go, the more acidic. The higher you go, the more alkaline. Your answer would most likely be 6.
2 Al + 6 HCl → 2 AlCl₃ + 3 H₂ (single displacement)
Ca + Br₂ → CaBr₂ (synthesis)
4 NH₃ + 5 O₂ → 4 NO + 6 H₂O (combustion)
2 NaCl → 2 Na + Cl₂ (decomposition)
FeS + 2 HCl → FeCl₂ + H₂S (double displacement)
single displacement - is a chemical reaction of the following type: A + BC → AC + B
double displacement - is a chemical reaction of the following type: AB + CD → AC + BD
synthesis - the chemical product is obtained by combining in a synthesis the constituent elements
combustion - usually a exothermic reaction of a particular compound with oxygen
decomposition - degradation of a compound in simpler elements
Following the key in the diagram (see the attached image), the only particle diagram that represents a mixture of three substances is diagram 2.
To simplify it, let us replace the key in the diagram as follows;
- atom of one element = A
- atom of different element = B
Diagram 1 consists of only AA and AB
Diagram 2 consists of AA, BB, and AB.
Diagram 3 consists of AA and ABA
Diagram 4 consists of AA and BAB
Thus, only diagram 2 has a mixture of 3 substances.
More on mixtures can be found here: brainly.com/question/6594631