1 mole CO₂----------- 6.02x10²³ molecules
4 moles CO₂ ---------- ??
4 x ( 6.02x10²³) / 1 =
= 2.41 x 10²⁴ / 1 => 2.41 x 10²⁴ molecules of CO₂
Answer C
<span>The correct answer is 'freezing point depression'. Colligative properties depend on the concentration of molecules of a solute. Examples of other colligative properties are boiling point elevation or vapour pressure lowering. The salt causes ice on the side walk to melt because it lowers the freezing point. </span>
Answer:
The correct option is B
Explanation:
One of the claims of John Dalton's atomic theory is that atom is the smallest unit of matter (which suggests that there are no particles smaller than an atom in any matter). This claim has been disproved by the modern atomic theory which established that there are particles smaller than atom (called subatomic particles). These particles are electrons, protons and neutrons.
One of the modern atomic theory was by Neils Bohr, who proposed that <u>electrons move in circular orbits around the central nucleus</u>. Thus, the electrons of iron can also be said to be present in a region of space (circular path) around the nucleus. This proves that option B is the correct option as John Dalton's theory did not even recognize the electron(s) nor the nucleus.
First, lets balance the reaction equation:
4Fe + 3O₂ → 2Fe₂O₃
It is visible form the equation that 4 moles of Fe require 3 moles of O₂
Molar ratio Fe/O₂ = 4/3 = 1.33
Molar ratio O₂/Fe = 3/4 = 0.75
Now, we check the molar ratios present:
Fe/O₂ = 6.8/8.9 = 0.76
O₂/Fe = 1.31
Thus, Iron is the limiting reactant because its ratio is not being fulfilled while the ratio of O₂ is surpassed.