Answer:
1.40 atm
Explanation:
To answer this question we can use<em> Gay-Lussac's law</em>, which states:
When volume and number of moles remain constant.
- T₁ = 23°C ⇒ 23+273.16 = 296.16 K
- T₂ = Boiling point of water = 100 °C ⇒ 100+273.16 = 373.16 K
We <u>put the known data in the equation and solve for P₂</u>:
- 1.11 atm * 373.16 K = P₂ * 296.16 K
I believe deforestation increases the biodiversity of a forest ecosystem. Trees are an essential organism for all ecosystem and forms of life. Without trees we have no oxygen, however trees so reproduce, but when you are chopping them down at the rate of deforestation(hence how it got it's name) then there is an issue
Answer:
900 J/mol
Explanation:
Data provided:
Enthalpy of the pure liquid at 75° C = 100 J/mol
Enthalpy of the pure vapor at 75° C = 1000 J/mol
Now,
the heat of vaporization is the the change in enthalpy from the liquid state to the vapor stage.
Thus, mathematically,
The heat of vaporization at 75° C
= Enthalpy of the pure vapor at 75° C - Enthalpy of the pure liquid at 75° C
on substituting the values, we get
The heat of vaporization at 75° C = 1000 J/mol - 100 J/mol
or
The heat of vaporization at 75° C = 900 J/mol
the numbers are going to be small so like a power but its at the bottom
NH3, H2O2, NHO2
An an increase in
temperature lead to more effective collisions between reactant particles and an
increase in the rate of a chemical reaction because the number of
molecules with sufficient energy to react increases. The answer is number 3.