The Boyle-Mariotte's law or Boyle's law is one of the laws of gases that <u>relates the volume (V) and pressure (P) of a certain amount of gas maintained at constant temperature</u>, as follows:
PV = k
where k is a constant.
We can relate the state of a gas at a specific pressure and volume to another state in which the same gas is at different P and V since the product of both variables is equal to a constant, according to the Boyle's law, which will be the same regardless of the state of the gas. In this way,
P₁V₁ = P₂V₂
Where P₁ and V₁ is the pressure and volume of the gas to a state 1 and P₂ and V₂ is the pressure and volume of the same gas in a state 2.
In this case, in the state 1 the gas occupies a volume V₁ = 100 mL at a pressure of P₁ = 150 kPa. Then, in the state 2 the gas occupies a volume V₂ (that we must calculate through the boyle's law) at a pressure of P₂ = 200 kPa. Substituting these values in the previous equation and clearing V₂, we have,
P₁V₁ = P₂V₂ → V₂ =
→ V₂ = 
→ V₂ = 75 mL
Then, the volume occupied by the gas at 200 kPa is V₂ = 75 mL
Answer:
32.6%
Explanation:
Equation of reaction
2KClO₃ (s) → 2KCl (s) + 3O₂ (g)
Molar mass of 2KClO₃ = 245.2 g/mol ( 122.6 × 2)
Molar volume of Oxygen at s.t.p = 22.4L / mol
since the gas was collected over water,
total pressure = pressure of water vapor + pressure of oxygen gas
0.976 = 0.04184211 atm + pressure of oxygen gas at 30°C
pressure of oxygen = 0.976 - 0.04184211 = 0.9341579 atm = P1
P2 = 1 atm, V1 = 789ml, V2 = unknown, T1 = 303K, T2 = 273k at s.t.p
Using ideal gas equation
=
V2 =
V2 = 664.1052 ml
245.2 yielded 67.2 molar volume of oxygen
0.66411 will yield =
= 2.4232 g
percentage of potassium chlorate in the original mixture =
= 32.6%
The electrons are unequally shared. The electronegative element receives the electrons from the electropositive one.
Answer:
A pH scale reading 13 indicates a strong base.
Explanation:
From my understanding:
1 -4 is a strong acid
4 - 7 is weak acid
7 - 9 is a weak base
9 - 14 is a strong base
Answer:
In 1827, Brown observed, using a microscope, that small particles ejected from pollen grains suspended in water executed a kind of continuous and jittery movement, this was named “Brownian motion”. ... This random movement of particles suspended in a fluid is now called after him.
Explanation:
HOPE this helps :)