Answer:
The statements that correctly describes pyruvate dehydrogenase includes:
- Several copies each of E 1 and E 3 surround E 2.
-A regulatory kinase and phosphatase are part of the mammalian PDH complex.
-E 2 contains three domains.
Explanation:
Pyruvate dehydrogenase is a hydrolase key enzyme in glucose metabolism which converts pyruvate to acetyl- ChoA. It also forms a complex that catalyzes an irreversible reaction that is the entry point of pyruvate into the TCA cycle. Pyruvate dehydrogenase complex contains E1, E2 and E3 enzymes that transform pyruvate, NAD+, coenzyme A into acetyl-CoA, CO2, and NADH. Also, A regulatory kinase and phosphatase are part of the mammalian PDH complex and E 2 contains three domains.
NH₃:
N = 8*10²²
NA = 6.02*10²³
n = N/NA = 8*10²²/6.02*10²³ ≈ 1.33*10⁻¹=0.133mol
O₂:
N=7*10²²
NA = 6.02*10²³
n = N/NA = 7*10²²/6.02*10²³ = 1.16*10⁻¹=0.116mol
4NH₃ <span>+ 3O</span>₂ ⇒<span> 2N</span>₂<span> + 6H</span>₂<span>O
</span>4mol : 3mol : 2mol
0.133mol : 0.116mol : 0,0665mol
limiting reactant
N₂:
n = 0.0665mol
M = 28g/mol
m = n*M = 0.0665mol*28g/mol = <u>1,862g</u>
I think it is B because you didn’t type the options
Answer:
1)The molar mass of an atom is simply the mass of one mole of identical atoms. However, most of the chemical elements are found on earth not as one isotope but as a mixture of isotopes, so the atoms of one element do not all have the same mass.
2)Equally important is the fact that one mole of a substance has a mass in grams numerically equal to the formula weight of that substance. Thus, one mole of an element has a mass in grams equal to the atomic weight of that element and contains 6.02 X 1023 atoms of the element.