I really don’t know good luck
Given data:
•) applied voltage = 15 V
•). Resistance = 1000 ohm
Required:
•). The magnitude of current= ?
•••••••••••••SOLUTION•••••••••••••
We can find the relation ship between current, voltage and resistance with the help of Ohms law.
According to ohms law;
V= IR.
Rearranging the above equation;
I= V/ R
Putt the values in the above equation; we get
I= 15V/ 1000ohm
I = 0.015 A( ampere)
••••••••••••••• CONCLUSION•••••••
The value of the current would be 0.15 ampere when Resistance is equal to 1000 and that of Voltage is equal to 15 V.
Answer:
Step 1 of 3
Case A:
AISI 1018 CD steel,
Fillet radius at wall=0.1 in,
Diameter of bar
From table deterministic ASTM minimum tensile and yield strengths for some hot rolled and cold drawn steels for 1018 CD steel
Tensile strength
Yield strength
The cross section at A experiences maximum bending moment at wall and constant torsion throughout the length. Due to reasonably high length to diameter ratio transverse shear will be very small compared to bending and torsion.
At the critical stress elements on the top and bottom surfaces transverse shear is zero
Explanation:
See the next steps in the attached image
Answer:
E= 15 GPa.
Explanation:
Given that
Length ,L = 0.5 m
Tensile stress ,σ = 10.2 MPa
Elongation ,ΔL = 0.34 mm
lets take young modulus = E
We know that strain ε given as



We know that

Therefore the young's modulus will be 15 GPa.
The C++ code that would draw all the iterations in the selection sort process on the array is given below:
<h3>C++ Code</h3>
#include <stdio.h>
#include <stdlib.h>
int main() {
int i, temp1, temp2;
int string2[16] = { 0, 4, 2, 5, 1, 5, 6, 2, 6, 89, 21, 32, 31, 5, 32, 12 };
_Bool check = 1;
while (check) {
temp1 = string2[i];
temp2 = string2[i + 1];
if (temp1 < temp2) {
string2[i + 1] = temp1;
string2[i] = temp2;
i = 0;
} else {
i++;
if (i = 15) {
check = !check;
}
}
}
return 0;
}
Read more about C++ programming here:
brainly.com/question/20339175
#SPJ1