Answer:
Explanation:
Tu pon lo que ocupes y espera
Answer:
See explanation
Explanation:
Given:
Initial pressure,
p
1
=
15
psia
Initial temperature,
T
1
=
80
∘
F
Final temperature,
T
2
=
200
∘
F
Find the gas constant and specific heat for carbon dioxide from the Properties Table of Ideal Gases.
R
=
0.04513
Btu/lbm.R
C
v
=
0.158
Btu/lbm.R
Find the work done during the isobaric process.
w
1
−
2
=
p
(
v
2
−
v
1
)
=
R
(
T
2
−
T
1
)
=
0.04513
(
200
−
80
)
w
1
−
2
=
5.4156
Btu/lbm
Find the change in internal energy during process.
Δ
u
1
−
2
=
C
v
(
T
2
−
T
1
)
=
0.158
(
200
−
80
)
=
18.96
Btu/lbm
Find the heat transfer during the process using the first law of thermodynamics.
q
1
−
2
=
w
1
−
2
+
Δ
u
1
−
2
=
5.4156
+
18.96
q
1
−
2
=
24.38
Btu/lbm
Ehheem✔️
Explanation:
✔️✖️✔️✖️✔️✖️
You can find air pods that look real on letgo. or you can go to wish.com but if you want a good pair jus get the real ones
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:





By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1