Answer:
The option that identifies why the bicycle cannot yet be created as a model in the scenario is;
Suzanne forgot to include the exact units of measurement that should be used
Explanation:
The design sketch turned over to the team that will work on the prototype by Suzanne should present all aspects of the design that will enable others working on the design and that make use of the sketch to have a clear understanding of what is required of them
Given that Suzanne has included the numbers that explain the relationship between the sketch and the real world object, the scale that shows the ratios and proportions of the sketch and the actual bicycle has been provided, however, given that the the machinist still need more information, the units of the measurement indicated in the drawing was not included, therefore, the actual dimensions and size that gives the length of the parts of the sketch and of the prototype to be made cannot be determined.
a bc if the bulbs are in a bad conditio. than u know that u dont have to remove it but only repair it.
A.
It would be released without a doubt so be careful!
Hope this helps :)
Mark brainliest please!
Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.
Compressors
Compressors are used to move gases and vapors in situations where large pressure differences are necessary.
Types of Compressor
Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.
Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.
The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.
When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.
Dynamic Compressors
Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.
Compressor Work
To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:
Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.
Adiabatic, Isentropic Compression
If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:
Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression
If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:
http://facstaff.cbu.edu/rprice/lectures/compress.html
Answer:
The flow of a real fluid has <u>more</u> complexity as compared to an ideal fluid owing to the phenomena caused by existence of <u>viscosity</u>
Explanation:
For a ideal fluid we know that there is no viscosity of the fluid hence the boundary condition need's not to be satisfied and the flow occur's without any head loss due to viscous nature of the fluid. The friction of the pipe has no effect on the flow of an ideal fluid. But for a real fluid the viscosity of the fluid has a non zero value, the viscosity causes boundary layer effects, causes head loss and also frictional losses due to pipe friction hugely make the analysis of the flow complex. The losses in the energy of the flow becomes complex to calculate as frictional losses depend on the roughness of the pipe and Reynolds number of the flow thus increasing the complexity of the analysis of flow.