Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is.
Answer:
Right hand thumb rule : It is a rule used to find the magnetic field direction around current carrying wire .
Explanation:
It states that : "If you grasp conductor in your right hand such that thumb points in upward direction ,then the direction in which our finger curls gives the direction of magnetic field or magnetic lines of forces" .
This rule proves that :Current can give rise to magnetism .
Around every current carrying conductor there exist a magnetic field which can be easily felt .
According to this rule : When a current flows in upward direction ,the finger curls in anticlockwise direction and when direction of current reverses ,then the direction of field also reverses .
Answer:
8.57 Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
The velocity, wavelength and frequency of a wave are related according to the equation:
Velocity = wavelength × frequency
v = λ × f
With the above formula, we can simply obtain the frequency of the wave as follow:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
v = λ × f
30 = 3.5 × f
Divide both side by 3.5
f = 30 / 3.5
f = 8.57 Hz
Thus, the frequency of the wave is 8.57 Hz
Answer:
False
Explanation:
ac = v^2/r
acceleration is not dependent on the mass of the orbiting object.