Answer:
First you fond the total force the car initialy has which is F=ma so it is 1500 times 8 which leads you to get 12000N then you divide the force of the car by the breaks and the road (4200N) which gives you 2.85 seconds for the car to come to a stop.
It is not possible to explain the interaction of the rod and pieces of paper as a gravitational interaction.
<h3>What is Gravitational interaction?</h3>
This is defined as the interaction between a particle or body resulting from their mass. This type of interaction is usually weak and occurs in all distances possible.
It is not gravitational interaction, because the rod attracts paper only against the gravitational force of the earth and there is no attraction between both bodies under a different condition.
This is therefore the reason why it is not possible to explain the interaction of the rod and pieces of paper as a gravitational interaction.
Read more about Gravitational interaction here brainly.com/question/25624188
#SPJ1
The answer is <span>higher than.
</span><span>A sound-producing object is moving toward an observer. The sound the observer hears will have a frequency higher than that actually being produced by the object.
Why?
</span>As the source of the waves is moving toward the observer, each of the successive wave crest<span> is emitted from a position closer to the observer than the previous wave.
Thus each wave takes slightly less time to reach the observer than the previous wave. So, the time between the arrival of successive wave crests at the observer is reduced, increasing the frequency. </span>
Resistance of our body is given as

voltage applied across the body is

now by ohm's law current pass through our body is given by

![i = \frac{120}{30,000}[\tex][tex]i = 4 * 10^{-3} A](https://tex.z-dn.net/?f=i%20%3D%20%5Cfrac%7B120%7D%7B30%2C000%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5Di%20%3D%204%20%2A%2010%5E%7B-3%7D%20A)
So current from our body will be 4 * 10^-3 A
Answer:
6844.5 m/s.
Explanation:
To get the speed of the satellite, the centripetal force on it must be enough to change its direction. This therefore means that the centripetal force must be equal to the gravitational force.
Formula for centripetal force is;
F_c = mv²/r
Formula for gravitational force is:
F_g = GmM/r²
Thus;
mv²/r = GmM/r²
m is the mass of the satellite and M is mass of the earth.
Making v the subject, we have;
v = √(GM/r)
We are given;
G = 6.67 × 10^(-11) m/kg²
M = 5.97 × 10^(24) kg
r = 8500 km = 8500000
Thus;
v = √((6.67 × 10^(-11) × (5.97 × 10^(24)) /8500000) = 6844.5 m/s.