Answer:
the two balls will hit the ground at the same time.
Explanation:
The time of dropping, in the following equation, is related to both the distance travel s and the gravitational acceleration g, which are the same for both ball (if we neglect air resistance), no matter what their mass are.
So the time it takes to drop 2 balls are the same. They will hit the ground at the same time.
Answer:
Work done = 0.3142 Nm
Explanation:
Mass of Object is 50 g
Circular path of radius is 10 cm ⇒ 0.1 m
Work done = Force × Distance = ?
*Distance moved (circular path) ⇒ Circumference of the circular path
2πr = 2 × 3.142 × 0.1 ⇒ 0.6284 m
*Force that is enough to move a 50 g must be equal or more than its weight.
therefore convert 50 grams to newton = 0.5 N
Recall that; work done is force times distance
∴ 0.5 N × 0.6284 m
Work done = 0.3142 Nm
Answer:
Hans is more powerful
Explanation:
Power: This can be defined as the rate at which work is done or energy is used up.
The expression for power is given as,
P = E/t
P = mgh/t................. Equation 1
Where P = power, W = Work, t = time, m = mass, h = height, g = acceleration due to gravity.
Hans' power
P = mgh/t
Given: m = 100 kg, h = 2 m, g = 9.8 m/s², t = 3 s
Substitute into equation 1
P = 100(9.8)(2)/3
P = 653.33 W.
Frans' power
P' = mgh/t
Given; m = 200 kg, h = 5 m, t = 20 s.
P' = 200(5)(9.8)/20
P' = 9800/20
P' = 490 W
from the above,
since P>P'
Hence, Hans is more powerful
When you exert a force on the coin, it will accelerate. If you push the coin and it moves at a constant velocity, the friction force must be equal to the force that you are exerting. This is an example of a balanced force. When the net force is greater than 0 N, the is an unbalanced force.
Answer: Option B. R = (1/2)gt^2
Explanation:
S = R (horizontal distance)
V^2 = 2gS
V^2 = 2gR
R = V^2 / 2g
But V = gt
R = (gt)^2 / 2g
R = (g^2 x t^2) / 2g
R = gt^2 / 2
But t^2 = 2h/g
R = ( g x 2h/g) / 2
R = h
But h = (1/2)gt^2
R = h = (1/2)gt^2