Answer:
option (D)
Explanation:
Here initial rotation speed is given, final rotation speed is given and asking for time.
If we use
A) θ=θ0+ω0t+(1/2)αt2
For this equation, we don't have any information about the value of angular displacement and angular acceleration, so it is not useful.
B) ω=ω0+αt
For this equation, we don't have any information about angular acceleration, so it is not useful.
C) ω2=ω02+2α(θ−θ0)
In this equation, time is not included, so it is not useful.
D) So, more information is needed.
Thus, option (D) is true.
Answer: We can define the solar constant as a measure of the luminous flux density.
Explanation:
The solar constant or solar constant is the amount of energy radiated at the upper limit of the Earth's atmosphere per unit time perpendicular to the unit surface, at the Earth's mean distance from the sun. Amounts to 1367.7 W / m² ± 6 W / m². The sun's constant includes all kinds of electromagnetic radiation, not just visible light. The average value is 1,368 kW / m2 and changes slightly with solar cycles. The amount of these constant changes over one year and has different benefits.
Answer:
A. MA=force output/force input
Explanation:
mechanical advantage is the ratio of the load to the effort
Answer: Friction
Explanation: Friction caused m by the ball rubbing against the grass and ground cause it to lose energy in the form of thermal energy and slow down