The law of conservation of angular momentum.
What is angular momentum?
Angular momentum is the rotational analog of linear momentum in physics. It is a conserved quantity, meaning the total angular momentum of a closed system remains constant. Both the direction and magnitude of angular momentum are conserved.
What is the law of conservation of angular momentum?
The law of conservation of angular momentum asserts that a system's total angular momentum is conserved when there is no external torque present. In other words, the magnitude and direction of the total angular momentum of an isolated system remain constant.
According to the Nebular Theory, the solar system originated as a massive, slowly rotating cloud of gas measuring around one light-year in diameter. As the cloud cooled, its own gravity caused it to collapse. It distorted into a revolving pancake shape due to the conservation of angular momentum, which required it to spin faster as it shrank.
Hence, the law of conservation of angular momentum best explains why the solar nebula spun faster as it shrank in size.
To leans more about the law of angular momentum link is given:
brainly.com/question/26870978?
#SPJ4
Force = mass times acceleration
F = 21000 x 36.9 = 774900
Therefore, 774900N force is required.
Answer:
v= 4 m/s
Explanation:
Momenutm is, by definition, the product of mass and velocity.

Let's replace what we know and solve for whatever's left

answer:They are too close to the sun!
Explanation:Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.Same with Venus!