1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
2 years ago
10

The mean diastolic blood pressure for a random sample of 80 people was 100 millimeters of mercury. If the standard deviation of

individual blood pressure readings is known to be 11 millimeters of mercury, find a 95% confidence interval for the true mean diastolic blood pressure of all people. Then give its lower limit and upper limit.
Mathematics
1 answer:
polet [3.4K]2 years ago
5 0

The confidence interval for the true mean diastolic blood pressure of all people is 100 ± 2.41 where the lower limit is 97.59 and the upper limit is 102.41

<h3>How to determine the confidence interval?</h3>

We have:

Mean = 100

Sample size = 80

Standard deviation = 11

At 95% confidence interval, the critical z value is:

z = 1.96

The confidence interval is then calculated as:

CI  = \bar x \pm z \frac{\sigma}{\sqrt n}

So, we have:

CI  = 100 \pm 1.96 \frac{11}{\sqrt {80}}

Evaluate the product

CI  = 100 \pm \frac{21.56}{\sqrt {80}}

Divide

CI  = 100 \pm 2.41

Split

CI  = (100 - 2.41,100 + 2.41)

Evaluate

CI  = (97.59,102.41)

Hence, the confidence interval for the true mean diastolic blood pressure of all people is 100 ± 2.41

Read more about confidence interval at:

brainly.com/question/15712887

#SPJ1

You might be interested in
Write two equivalent expressions for each radical expression using product law of radicals. One of you expressions should simpli
Lana71 [14]

The way to solve radicals include:

  • Determine the prime factors of the number under the root.
  • Write the prime factors in groups.
  • Simplify any multiplication and exponents.
  • Simplify the radical until no further simplification can be done.

<h3>How to illustrate the information?</h3>

It should be noted that your information is incomplete. Therefore, an overview will be given.

When the radical symbol is used to denote any root other than a square root, there will be a superscript number in the 'V'-shaped part of the symbol.

For example, 3√(8) means to find the cube root of 8

Learn more about radical on:

brainly.com/question/8952483

#SPJ1

3 0
2 years ago
Alexander deposited money into his retirement account that is compounded annually at an interest rate of 7%.
anzhelika [568]
Tow rates are equivalent if tow initial investments over a the same time, produce the same final value using different interest rates.

For the annually rate we have that:
V_{0} =(1+ i_{a} ) ^{1}
Where
V_{0} = initial investment.
i_{a} = annually interest rate in decimal form.
And the exponent (1) represents the full year.

For the quarterly interest rate we have that:
V_{0} =(1+ i_{q} ) ^{4}
Where
V_{0} = initial investment.
i_{q} = quarterly interest rate in decimal form.
And the exponent (4) the 4 quarters in the full year.

Since the rates are equivalent if tow initial investments over a the same time, produce the same final value, then
(1+ i_{a} )=(1+ i_{q} ) ^{4}
Notice that we are not using the initial investment V_{0} since they are the same.

The first thin we are going to to calculate the equivalent quarterly rate of the 7% annually rate is converting 7% to decimal form
7%/100 = 0.07
Now, we can replace the value in our equation to get:
(1+0.07)=(1+ i_{q} ) ^{4}
1.07=(1+ i_{q} ) ^{4}
\sqrt[4]{1.07} =1+ i_{q}
 i_{q} = \sqrt[4]{1.07} -1
i_{q} =0.017
Finally, we multiply the quarterly interest rate in decimal form by 100% to get:
(0.017)(100%) = 1.7%
We can conclude that Alexander is wrong, the equivalent quarterly rate of an annually rate of 7% is 1.7% and not 2%.


6 0
4 years ago
HELPPPP!!!!<br> What is the greatest common factor of 42 and 55?
ArbitrLikvidat [17]

Answer:

Step-by-step explanation:

hey sis sorry i havent talked to u in awhile

6 0
3 years ago
Help help help help help
Naily [24]
The answer is x = 6

hope this helps
7 0
3 years ago
If sinA+cosecA=3 find the value of sin2A+cosec2A​
Irina18 [472]

Answer:

\sin 2A + \csc 2A = 2.122

Step-by-step explanation:

Let f(A) = \sin A + \csc A, we proceed to transform the expression into an equivalent form of sines and cosines by means of the following trigonometrical identity:

\csc A = \frac{1}{\sin A} (1)

\sin^{2}A +\cos^{2}A = 1 (2)

Now we perform the operations: f(A) = 3

\sin A + \csc A = 3

\sin A + \frac{1}{\sin A} = 3

\sin ^{2}A + 1 = 3\cdot \sin A

\sin^{2}A -3\cdot \sin A +1 = 0 (3)

By the quadratic formula, we find the following solutions:

\sin A_{1} \approx 2.618 and \sin A_{2} \approx 0.382

Since sine is a bounded function between -1 and 1, the only solution that is mathematically reasonable is:

\sin A \approx 0.382

By means of inverse trigonometrical function, we get the value associate of the function in sexagesimal degrees:

A \approx 22.457^{\circ}

Then, the values of the cosine associated with that angle is:

\cos A \approx 0.924

Now, we have that f(A) = \sin 2A +\csc2A, we proceed to transform the expression into an equivalent form with sines and cosines. The following trignometrical identities are used:

\sin 2A = 2\cdot \sin A\cdot \cos A (4)

\csc 2A = \frac{1}{\sin 2A} (5)

f(A) = \sin 2A + \csc 2A

f(A) = \sin 2A +  \frac{1}{\sin 2A}

f(A) = \frac{\sin^{2} 2A+1}{\sin 2A}

f(A) = \frac{4\cdot \sin^{2}A\cdot \cos^{2}A+1}{2\cdot \sin A \cdot \cos A}

If we know that \sin A \approx 0.382 and \cos A \approx 0.924, then the value of the function is:

f(A) = \frac{4\cdot (0.382)^{2}\cdot (0.924)^{2}+1}{2\cdot (0.382)\cdot (0.924)}

f(A) = 2.122

8 0
3 years ago
Other questions:
  • 1. Solve the equation by finding square roots. 4a^2+16=0
    5·1 answer
  • Which expression is equivalent to 3^2 ⋅ 3^−5?
    14·2 answers
  • 6. There are 56 white marbles in a jar.
    12·2 answers
  • Find the equation of the line that passes through the points ( -3,5 ) and ( -9, 11 )​
    15·1 answer
  • roblem: Report Error Let $f(x)=(x^2+6x+9)^{50}-4x+3$, and let $r_1,r_2,\ldots,r_{100}$ be the roots of $f(x)$. Compute $(r_1+3)^
    12·1 answer
  • Part II: Convert 7.75 pounds to ounces.
    5·1 answer
  • Is -2/3 and -0.8 greater than, less than, or equal to?
    12·1 answer
  • Y is this so hard? :/ i dont know, but its a test, pls get it right
    11·1 answer
  • Find the gradient of the line segment between the points (-5,2) and (4,3) give your answer in the simplest form
    9·1 answer
  • 1) Based on the provided chemical and physical properties of the unknown substance. It would be MOST useful as a(n) es A) machin
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!