Answer:
179 degree
Explanation:
Solid copper will lose heat to warm up and melt ice . Since all the ice has not melted so final temperature of mixture will be zero.
heat gained by ice to reach temperature of zero degree
= mass of ice x specific heat of ice x rise of temp
= 2 x 2093 x 16 = 66976 J
Heat gained to melt 1.1. kg of ice
mass x latent heat of ice
1.1 x 334000
= 367400
total heat
= 367400 + 66976
=434376
Heat lost by copper
= 6.3 x 385 x T
where 385 is specific heat of copper and T is initial temperature
heat lost = heat gained
6.3 x 385 T = 434376
T = 434376 / (6.3 x 385)
= 179 degree .
Answer:
The value is 
Explanation:
From the question we are told that
The current is 
The radius is 
The length of the wire is
\
The resistance is 
The outer surface temperature is 
The average thermal conductivity is 
Generally the heat generated in the stainless steel wire is mathematically represented as


=> 
=> 
Generally the middle temperature is mathematically represented as



Period = (1) / (frequency)
= (1) / (20/sec)
= 1/20 sec
The best and most correct answer among the choices provided by the question is <span>d.Cations are positively charged and anions are negatively charge.
</span>
Hope my answer would be a great help for you.
If you have more questions feel free to ask here at Brainly.
Answer:
1143 N at 1.59 m from the left end
Explanation:
For the system to produce equilibrium, the total force and moment must be 0. Since the total weight downward is
481 + 381 + 281 = 1143 N
Therefore the magnitude of the force acting upward to balance this system must be the same of 1143 N
That alone is not enough, we also need the position of the force for the total moment to be 0.
Let x be the length from the this upward force to the left side. And let the left point be the point of reference for moment arm:
481 * 3.32/2 + 381 * 0.8798 + 281*(3.32 - 0.8798) - 1143*x = 0
x = (481*1.66 + 381 * 0.8798 + 281*2.4402)/1143 = 1.59m