To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 
Momentum = (mass) x (speed)
Momentum = (70 kg) x (10 m/s)
<em>Momentum = 700 kg-m/s</em>
Answer:
here
Explanation:
There are two forces acting upon the skydiver - gravity (down) and air resistance (up). The force of gravity has a magnitude of m•g = (72 kg) •(9.8 m/s/s) = 706 N. ... a 3.25-kg object rightward with a constant acceleration of 1.20 m/s/s if the force of ... of 33.8 kg, how far (in meters) will it move in 1.31 seconds, starting from rest?
Answer:
A because it was rejected as it cannot become a law it was totally wrong as compared to today's information about out universe that how big bang theory was there.... So it is right the option A
Let us say that Cp is the specific heat of the metal object.
Then we do a heat balance (heat lost by metal = heat gained by water):
- 19g * Cp * (22degC – 96degC) = 75g * 4.184J/g degC * (22degC
– 18degC)
<span>Cp = 0.893 J/g degC</span>