Answer:
Explanation:
1 ) tire of radius 0.381 m rotating at 12.2 rpm
12.2 rpm = 12.2 /60 rps
n = .20333 rps
angular speed
= 2πn
= 2 x 3.14 x .20333
= 1.277 rad / s
2 ) a bowling ball of radius 12.4 cm rotating at 0.456 rad/s
angular speed = .456 rad/s
3 ) a top with a diameter of 5.09 cm spinning at 18.7∘ per second
18.7° per second = (18.7 / 180) x 3.14 rad/s
= .326 rad/s
4 )
a rock on a string being swung in a circle of radius 0.587 m with
a centripetal acceleration of 4.53 m/s2
centripetal acceleration = ω²R
ω is angular velocity and R is radius
4.53 = ω² x .587
ω = 2.78 rad / s
5 )a square, with sides 0.123 m long, rotating about its center with corners moving at a tangential speed of 0.287 m / s
The radius of the circle in which corner is moving
= .123 x √2
=.174 m
angular velocity = linear velocity / radius
.287 / .174
1.649 rad / s
The perfect order is
4 ) > 5> 1 >2>3.
It would be 8 so that would be you answer
In a series circuit, all devices are constrained to a single flow of current. There can only be a single value for the current for all devices, otherwise this would violate the conservation of charge. Therefore the current must be the same across each resistor.
<h3>The answer is D.</h3>
The "c) percent efficiency" could not be used to find the mechanical advantage of an inclined plane. There are two formulae that could be used to determine the mechanical advantage of an inclined plane which stated as MA = Length/rise and Wout=Win. MA is the mechanical advantage, Wout is the output force, Win is the input force, and "rise" is the height of the inclined plane<span>.</span>
The answer is deposition/A. Please mark brainliest.