wave function of a particle with mass m is given by ψ(x)={ Acosαx −
π
2α
≤x≤+
π
2α
0 otherwise , where α=1.00×1010/m.
(a) Find the normalization constant.
(b) Find the probability that the particle can be found on the interval 0≤x≤0.5×10−10m.
(c) Find the particle’s average position.
(d) Find its average momentum.
(e) Find its average kinetic energy −0.5×10−10m≤x≤+0.5×10−10m.
Answer:
Speed of the wave is 7.87 m/s.
Explanation:
It is given that, tapping the surface of a pan
of water generates 17.5 waves per second
We know that the number of waves per
second is called the frequency of a wave.
So, f= 17.5 HZ
Wavelength of each wave,
A = 45 cm = 0.45 m
Speed of the wave is given by:
175 × 0.45
V= 7.87 m/s
So, the speed of the wave is 7.87 m/s
Hence, this is the required solution.
The state of matter that has particles that slide by one another is liquid because liquid is very slippery.
b. A Boeing 747 airplane
Explanation:
The Boeing 747 airplane will have the most inertia of all. Inertia is the tendency of an object to remain at rest or uniform motion.
- Newton's first law of motion is also regarded as the law of inertia.
- It states that "an object will remain at rest or uniform motion motion unless acted upon by an external force".
- A body that has a large mass will be more resistant to any external force that acts on it.
- The Boeing 747 has the most mass of all and will have the most inertia.
Learn more:
Inertia brainly.com/question/691705
#learnwithBrainly