No I don’t sorry, I hope you do well
Answer:
Given that
Mass flow rate ,m=2.3 kg/s
T₁=450 K
P₁=350 KPa
C₁=3 m/s
T₂=300 K
C₂=460 m/s
Cp=1.011 KJ/kg.k
For ideal gas
P V = m R T
P = ρ RT


ρ₁=2.71 kg/m³
mass flow rate
m= ρ₁A₁C₁
2.3 = 2.71 x A₁ x 3
A₁=0.28 m²
Now from first law for open system

For ideal gas
Δh = CpΔT
by putting the values


Q= - 45.49 KJ/kg
Q =- m x 45.49 KW
Q= - 104.67 KW
Negative sign indicates that heat transfer from air to surrounding
The project or the site manager is responsible for monitoring or verifying the aspects of the construction process.
The site or the project manager is the individual that is responsible for the adherence to quality and guidance on the construction site.
The site or project manager has the following tasks
- ensuring safety on the site
- Monitoring the progress or the work that is being done
- Sourcing materials
- Solving problems
In conclusion, the project manager monitors and verifies aspects of the construction process.
Read more on brainly.com/question/24887827?referrer=searchResults
Answer:
c. Alto módulo de elasticidad
Explanation:
The correct answer to the given question is c. Alto modulo de elasticidad
A Youngs modulus measures the resistance of any material to elastic deformation. It is basically the ratio of the stress applied to a body to the results of the stress which is the response of the body over the pressure applied. This is to test the stiffness of any material and most of time the material stays constant over stressing.
Explanation:
The obtained data from water properties tables are:
Point 1 (condenser exit) @ 8 KPa, saturated fluid

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

Calculate mass flow rates
Part a) @ 18 MPa
mass flow

Heat transfer rate through boiler

Heat transfer rate through condenser

Thermal Efficiency

Part b) @ 4 MPa
mass flow

Heat transfer rate through boiler

Heat transfer rate through condenser

Thermal Efficiency
