Answer:
a) 3581.15067 kw
b) 95.4%
Explanation:
<u>Given data:</u>
compressor efficiency = 85%
compressor pressure ratio = 10
Air enters at: flow rate of 5m^3/s , pressure = 100kPa, temperature = 300 K
At turbine inlet : pressure = 950 kPa, temperature = 1400k
Turbine efficiency = 88% , exit pressure of turbine = 100 kPa
A) Develop a full accounting of the exergy increase of the air passing through the gas turbine combustor in kW
attached below is a detailed solution to the given question
Answer:
a)-True
Explanation:
Three point bending is better than tensile for evaluating the strength of ceramics. It is got a positive benefit to tensile for evaluating the strength of ceramics.
Answer:
The drying time is calculated as shown
Explanation:
Data:
Let the moisture content be = 0.6
the free moisture content be = 0.08
total moisture of the clay = 0.64
total drying time for the period = 8 hrs
then if the final dry and wet masses are calculated, it follows that
t = (X0+ Xc)/Rc) + (Xc/Rc)* ln (Xc/X)
= 31.3 min.
Answer:
1170 km/hr
Explanation:
Let's first state the formula to be used
c = √(KRT)
The temperature at an altitude of 15km is -56.5° C
Let's not convert this to °K, we have
-56.5° + 273.15 = 216.65° K
Also, the temperature at 8km is -36.9° C, on converting to °K we have
-36.9° + 273.15 = 236.25° K
Then again, we look for the speed at both 15 km and 8 km both of which are 295 m/s and 308 km
Finally, we use the mach similarity formula
(V/c) of 15km = (V/c) of 8km
V of 8km = c of 8km * (V/c) of 15km
V of 8km = 1170 km/hr
Answer:
A) 30 mH
B ) 10-ohm
Explanation:
resistor = 10-ohm
Inductor = 30mH ( l )
L = inductance
R = resistance
r = internal resistance
values of the original Inductors
Note : inductor = constant time (t) case 1
inductor + 10-ohm resistor connected in series = constant time ( t/2) case2
inductor + 10-ohm resistor + 30 mH inductance in series = constant time (t) case3
<em>From the above cases</em>
case 1 = time constant ( t ) = L / R
case 2 = Req = R + r hence time constant t / 2 = L / R + r therefore
t = 
case 3 = Leq = L + l , Req = R + r . constant time ( t )
hence Z =
= t
A) Inductance
To calculate inductance equate case 1 to case 3
=
= L / 10 = (L + 30) / ( 10 + 10 )
= 20 L = 10 L + 300 mH
10L = 300 m H
therefore L = 30 mH
B ) The internal resistance
equate case 1 to case 2
= 
R + r = 2 R therefore ( r = R ) therefore internal resistance = 10-ohm