Answer:
The required pumping head is 1344.55 m and the pumping power is 236.96 kW
Explanation:
The energy equation is equal to:

For the pipe 1, the flow velocity is:

Q = 18 L/s = 0.018 m³/s
D = 6 cm = 0.06 m

The Reynold´s number is:


Using the graph of Moody, I will select the f value at 0.0043 and 335339.4, as 0.02941
The head of pipe 1 is:

For the pipe 2, the flow velocity is:

The Reynold´s number is:


The head of pipe 1 is:

The total head is:
hi = 1326.18 + 21.3 = 1347.48 m
The required pump head is:

The required pumping power is:

Answer:
The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3
Heat flux is 9.67×10^7 Btu/hrft^2
Explanation:
Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr
Area (A) = πD^2/4
Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft
A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2
Volume (V) = A × Length
L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft
V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3
Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3
Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2
Answer: drugs and rushing cars
Explanation: drug dealers are everywhere on city streets nowadays they have been killing young adults
rushing cars or reckless drivers cut curb fast and potentially someone can get hurt they are speeding and not worrying about other people lives at stake
Answer:
Load carried by shaft=9.92 ft-lb
Explanation:
Given: Power P=4.4 HP
P=3281.08 W
<u><em>Power: </em></u>Rate of change of work with respect to time is called power.
We know that P=
rad/sec
So that P=
So 3281.08=
T=13.45 N-m (1 N-m=0.737 ft-lb)
So T=9.92 ft-lb.
Load carried by shaft=9.92 ft-lb
Answer:
mean:24/5
ascending order:1,2,3,4,5,5,6,6,7,9
median:5