Answer:
0.00650 Ib s /ft^2
Explanation:
diameter ( D ) = 0.71 inches = 0.0591 ft
velocity = 0.90 ft/s ( V )
fluid specific gravity = 0.96 (62.4 ) ( x )
change in pressure ( P ) = 0 because pressure was constant
viscosity = (change in p - X sin∅ )
/ 32 V
= ( 0 - 0.96( 62.4) sin -90 ) * 0.0591 ^2 / 32 * 0.90
= - 59.904 sin (-90) * 0.0035 / 28.8
= 0.1874 / 28.8
viscosity = 0.00650 Ib s /ft^2
Answer:
The maximum theoretical height that the pump can be placed above liquid level is 
Explanation:
To pump the water, we need to avoid cavitation. Cavitation is a phenomenon in which liquid experiences a phase transition into the vapour phase because pressure drops below the liquid's vapour pressure at that temperature. As a liquid is pumped upwards, it's pressure drops. to see why, let's look at Bernoulli's equation:

(
stands here for density,
for height)
Now, we are assuming that there aren't friction losses here. If we assume further that the fluid is pumped out at a very small rate, the velocity term would be negligible, and we get:


This means that pressure drop is proportional to the suction lift's height.
We want the pressure drop to be small enough for the fluid's pressure to be always above vapour pressure, in the extreme the fluid's pressure will be almost equal to vapour pressure.
That means:

We insert that into our last equation and get:

And that is the absolute highest height that the pump could bear. This, assuming that there isn't friction on the suction pipe's walls, in reality the height might be much less, depending on the system's pipes and pump.
R = distance
dr/dt speed or with a direction, velocity
d(dr/dt)/dt = the time derivative of the velocity is called acceleration.
Speed is a scalar. Acceleration is a vector.