Answer:
ω, the angular frequency of the source equals 377 rad/s
Explanation:
From the question, V(t) = V cosωt.
Now, ω = the angular frequency of the sinusoidal wave is given by
ω = 2πf where f = the frequency of the source = 60 Hz
So, the angular frequency of the source ,ω = 2π × the frequency of the source.
So, ω = 2πf
ω = 2π × 60 Hz
ω = 120π rad/s
ω = 376.99 rad/s
ω ≅ 377 rad/s
So, ω, the angular frequency of the source equals 377 rad/s
Unfortunately, the given statements are missing from the problem. However, we can still determine the relationship between the electric force between two objects and the distance between them. The formula for the electric force is given below:
F = (k*Q1*Q2)/d^2
k is a constant, while Q1 and Q2 are the respective charges of the objects. F is force, while d is distance.
As seen in the formula, we can see that the electric force F is inversely proportional to the square of the distance between the two objects.
<span>What is the quality of the sound of a fire truck’s siren when it moves toward a stationary hearer?
Its High Pitched
</span>
What is the quality of the sound of a fire truck’s siren when it moves away from a stationary hearer?
Its Low Pitched