Answer:
Explanation:
Given that
Mass of bowling ball M1=7.2kg
The radius of bowling ball r1=0.11m
Mass of billiard ball M2=0.38kg
The radius of the Billiard ball r2=0.028m
Gravitational constant
G=6.67×10^-11Nm²/kg²
The magnitude of their distance apart is given as
r=r1+r2
r=0.028+0.11
r=0.138m
Then, gravitational force is given as
F=GM1M2/r²
F=6.67×10^-11×7.2×0.38/0.138²
F=9.58×10^-9N
The force of attraction between the two balls is
F=9.58×10^-9N
Answer: Explained below
Explanation: The calculations are not very accurate. The distance would be underestimated because double crossovers are not observed.
Resistance= Potential Difference/Current
10 Ohm= PD/ 5A
PD= 10 Ohm × 5A
PD=50
Therefore, Potential Difference is B. 50 V
Answer:
v = 1.6 m/s
Explanation:
Given that,
Distance, d = 72 m
Time taken, t = 45 s
We need to find their average velocity. Average velocity of an object is given by total distance divided by total time taken.

So, their average velocity is 1.6 m/s.