it would be 9.93300
so 3 decimal places because the zeros don't count
Answer:
Solutions are 2, -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i
or 2, -1 + 1.58 i and -1 - 1.58i
(where the last 2 are equal to nearest hundredth).
Step-by-step explanation:
The real solution is x = 2:-
x^3 - 8 = 0
x^3 = 8
x = cube root of 8 = 2
Note that a cubic equation must have a total of 3 roots ( real and complex in this case). We can find the 2 complex roots by using the following identity:-
a^3 - b^3 = (a - b)(a^2 + ab + b^2).
Here a = x and b = 2 so we have
(x - 2)(x^2 + 2x + 4) = 0
To find the complex roots we solve x^2 + 2x + 4 = 0:-
Using the quadratic formula x = [-2 +/- sqrt(2^2 - 4*1*4)] / 2
= -1 +/- (sqrt( -10)) / 2
= -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i
There is no solution
Hope this helps :)
\left[x \right] = \left[ \frac{5\,y}{158}+\frac{6\,z}{79}\right][x]=[1585y+796z] totally answer
<span>(A) Find the approximate length of the plank. Round to the nearest tenth of a foot.
Given that the distance of the ground is 3ft.
In order to get the length of the plank,
we can use the this one.
cos 49 = ground / plank
cos 49 = 3 / plank
plank = cos 49 / 3
plank = 0.10 ft
</span><span>(b) Find the height above the ground where the plank touches the wall. Round to the nearest tenth of a foot.
</span><span>
The remaining angle is equal to
angle = 180 - (90+49)
angle = 41
Finding the height.
tan 41 = height / ground
tan 41 = height / 3
height = tan 41 / 3
height = 0.05 ft.
(A) 0.10 feet
(B) 0.05 feet</span>