If the acceleration is constant (negative or positive) the instantaneous acceleration cannot be
Average acceleration: [final velocity - initial velocity ] /Δ time
Instantaneous acceleration = d V / dt =slope of the velocity vs t graph
If acceleration is increasing, the slope of the curve at one moment will be higher than the average acceleration.
If acceleration is decreasing, the slope of the curve at one moment will be lower than the average acceleration.
If acceleration is constant, the acceleration at any moment is the same, then only at constant accelerations, the instantaneuos acceleration is the same than the average acceleration.
Constant zero acceleration is a particular case of constant acceleration, so at constant zero acceleration the instantaneous accelerations is the same than the average acceleration: zero. But, it is not true that only at zero acceleration the instantaneous acceleration is equal than the average acceleration.
That is why the only true option and the answer is the option D. only at constant accelerations.
The control group is the independent variable and the experimental group is the dependent due to change during the experiment. The experimental group will usually rely on another variable in the experiment for change.
Velocity change v time because ACCELERATION=CHANGE IN VELOCITY/TIME
Answer:
<em>Undergo global warming at a faster rate than what we are seeing currently</em>
Explanation:
Climate can be described as the average weather of a place. The climate of a particular place can be described after looking at the temperature of the place for a year or more.
If factors, such as the Sun and volcanoes controlled climates then there would be an increase in the temperature and more global warming. Volcanoes can be described as heat erupting from mountains which will, of course, lead to global warming.
Answer:
442.36038 m or 1451.31362 ft
Explanation:
= Initial pressure = 30.15 inHg
= Final pressure = 28.607 inHg
= Density of air = 0.075 lb/ft³



Density of mercury = 13560 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
Difference in pressure is given by

The height of the building is 442.36038 m or 1451.31362 ft