At the highest point in its trajectory, the ball's acceleration is zero but its velocity is not zero.
<h3>What's the velocity of the ball at the highest point of the trajectory?</h3>
- At the highest point, the ball doesn't go more high. So its vertical velocity is zero.
- However, the ball moves horizontal, so its horizontal component of velocity is non - zero i.e. u×cosθ.
- u= initial velocity, θ= angle of projection
<h3>What's the acceleration of the ball at the highest point of projectile?</h3>
- During the whole projectile motion, the earth exerts the gravitational force with a acceleration of gravity along vertical direction.
- But as there's no acceleration along vertical direction, so the acceleration along vertical direction is zero.
Thus, we can conclude that the acceleration is zero and velocity is non-zero at the highest point projectile motion.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Player kicks a soccer ball in a high arc toward the opponent's goal. At the highest point in its trajectory
A- neither the ball's velocity nor its acceleration are zero.
B- the ball's acceleration points upward.
C- the ball's acceleration is zero but its velocity is not zero.
D- the ball's velocity points downward.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ1
Answer:
Form of energy: Example
1. Light energy: Electromagnetic radiation
2. Nuclear energy: Nuclear fission
3. Chemical energy: Energy stored in plant matter
4. Electrical energy: Lightning
5. Thermal energy: A hot surface
6. Sound energy: A tuning fork
7. Solar energy: Energy from the Sun
8. Mechanical energy: A moving vehicle
Answer:by driving east 3 blocks from the starting point
Explanation:)
Answer:
1- For the track B. The potential energy is the same for the two cars, but because of the slope of the track, the car B earn kinetic energy faster. The gravitation acceleration of the cars will be g•sinθ, and the angle of the track B will have a bigger value for sinθ
2- The conservation of energy applies because the roller coaster is a closed track. When a car climb the track, it earn GPE, which is given by mgh, when it get down in the track, it transform GPE in KE, which is given in 1/2mv².
3-
Position of car (m) GPE KE GPE + KE
top (30m) 60000 0 60000
bottom (0m) 0 60000 60000
halfway down (15m) 30000 30000 60000
three-quarters way down 15000 45000 60000