1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brrunno [24]
2 years ago
10

Somebody please assist me here

Mathematics
1 answer:
Anettt [7]2 years ago
5 0

The base case of n=1 is trivially true, since

\displaystyle P\left(\bigcup_{i=1}^1 E_i\right) = P(E_1) = \sum_{i=1}^1 P(E_i)

but I think the case of n=2 may be a bit more convincing in this role. We have by the inclusion/exclusion principle

\displaystyle P\left(\bigcup_{i=1}^2 E_i\right) = P(E_1 \cup E_2) \\\\ P\left(\bigcup_{i=1}^2 E_i\right) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \\\\ P\left(\bigcup_{i=1}^2 E_i\right) \le P(E_1) + P(E_2) \\\\ P\left(\bigcup_{i=1}^2 E_i\right) \le \sum_{i=1}^2 P(E_i)

with equality if E_1\cap E_2=\emptyset.

Now assume the case of n=k is true, that

\displaystyle P\left(\bigcup_{i=1}^k E_i\right) \le \sum_{i=1}^k P(E_i)

We want to use this to prove the claim for n=k+1, that

\displaystyle P\left(\bigcup_{i=1}^{k+1} E_i\right) \le \sum_{i=1}^{k+1} P(E_i)

The I/EP tells us

\displaystyle P\left(\bigcup\limits_{i=1}^{k+1} E_i\right) = P\left(\left(\bigcup\limits_{i=1}^k E_i\right) \cup E_{k+1}\right) \\\\ P\left(\bigcup\limits_{i=1}^{k+1} E_i\right) = P\left(\bigcup\limits_{i=1}^k E_i\right) + P(E_{k+1}) - P\left(\left(\bigcup\limits_{i=1}^k E_i\right) \cap E_{k+1}\right)

and by the same argument as in the n=2 case, this leads to

\displaystyle P\left(\bigcup\limits_{i=1}^{k+1} E_i\right) = P\left(\bigcup\limits_{i=1}^k E_i\right) + P(E_{k+1}) - P\left(\left(\bigcup\limits_{i=1}^k E_i\right) \cap E_{k+1}\right) \\\\ P\left(\bigcup\limits_{i=1}^{k+1} E_i\right) \le P\left(\bigcup\limits_{i=1}^k E_i\right) + P(E_{k+1})

By the induction hypothesis, we have an upper bound for the probability of the union of the E_1 through E_k. The result follows.

\displaystyle P\left(\bigcup\limits_{i=1}^{k+1} E_i\right) \le P\left(\bigcup\limits_{i=1}^k E_i\right) + P(E_{k+1}) \\\\ P\left(\bigcup\limits_{i=1}^{k+1} E_i\right) \le \sum_{i=1}^k P(E_i) + P(E_{k+1}) \\\\ P\left(\bigcup\limits_{i=1}^{k+1} E_i\right) \le \sum_{i=1}^{k+1} P(E_i)

You might be interested in
Determine which would make this solution true s < 0.43
sattari [20]

Answer:

B and D it ez

Step-by-step explanation:

4 0
3 years ago
Least to greatest 7/12,0.75,5/6
irina [24]
Hello there.

<span>Least to greatest 7/12,0.75,5/6

7/12 ,5/6, 0.75</span>
8 0
3 years ago
Read 2 more answers
How do I graph -2=-2x+y
igor_vitrenko [27]
You must first set the y by itself. And use the slope formula to find the slope. 2 would be the point for the y axis
6 0
3 years ago
A and B are two similar shapes the area of shape A is 200cm2 calculate the area of shape B
barxatty [35]

Answer:

Area of shape B = 312.5 cm²

Step-by-step explanation:

Ratio of Area of A : Area of B = 12² : 15²

Given that area of A is 200 cm², let the area of shape B = x

Therefore:

200:x = 12²:15²

200/x = 144/225

Cross multiply

144x = 200*225

144x = 45,000

x = 45,000/144

x = 312.5 cm²

Area of shape B = 312.5 cm²

5 0
2 years ago
Which ordered pairs is a solution to −5x + 3y &gt; 12?
In-s [12.5K]

<u>Answer </u><u>:</u><u>-</u>

Given inequality ,

  • -5x +3y > 12
  • 3y > 5x + 12
  • y > 5/3x + 12/3
  • y > 5/3x + 4

From the options ,

<u>When </u><u>x </u><u>is </u><u>3</u><u> </u><u>and </u><u>y </u><u>=</u><u> </u><u>9</u>

  • y >1* 5 + 4
  • y > 5 +4
  • 9> 9 ( Not possible )

<u>When</u><u> </u><u>x </u><u>is </u><u>-</u><u>5</u><u> </u><u>y</u><u> </u><u>is </u><u>5</u><u> </u>

  • y > 5/3*-5 + 4
  • y > -8.3 + 4
  • 5 > -3.7 ( Possible )

<u>When </u><u>x </u><u>is </u><u>3</u><u> </u><u>y </u><u>is </u><u>-</u><u>6</u><u> </u>

  • y > 5 + 4
  • -6 > 9 ( Not possible )

<u>When </u><u>x </u><u>is </u><u>-</u><u>2</u><u> </u><u>y </u><u>is </u><u>-</u><u>5</u><u> </u>

  • y > -3.33 + 4
  • -5 > -0.67 ( Possible )

<u>When </u><u>x </u><u>is </u><u>2</u><u> </u><u>y </u><u>is </u><u>8</u><u> </u>

  • y > 3.33 + 4
  • 8 > 7.77 ( possible )

<u>When</u><u> </u><u>x </u><u>is </u><u>-</u><u>6</u><u> </u><u>y </u><u>is </u><u>0</u><u> </u>

  • y > -10 +4
  • 0 > -6 ( possible )
7 0
2 years ago
Read 2 more answers
Other questions:
  • Please Help! I need help to my math question
    11·2 answers
  • For the following system, use the second equation to make a substitution for x in the first equation.
    8·1 answer
  • Write an equation in slope-intercept form of the line that passes throught the point and given slope:
    5·1 answer
  • Worth 30 points plz hlelp
    11·1 answer
  • Two trucks, 36 feet apart, are towing a large field mower. If the lengths of the tow ropes are 27 feet and 19 feet, find the ang
    15·1 answer
  • It takes Mr. Martin 12 minutes to drive his bus route without stopping to pick up any passengers. For each passenger stop, he es
    7·1 answer
  • the chumas family is driving from north carolina to california on vacation. They drive 330 in 5.5 hours How many hours would it
    11·2 answers
  • Numerical Response
    12·1 answer
  • WALLAHI HELP ME PLEASE
    7·1 answer
  • Please help, no links. PLEASE!!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!