The equation of a parabola whose vertex is (0, 0) and focus is (1 / 8, 0) is equal to x = 2 · y².
<h3>How to derive the equation of the parabola from the locations of the vertex and focus</h3>
Herein we have the case of a parabola whose axis of symmetry is parallel to the x-axis. The <em>standard</em> form of the equation of this parabola is shown below:
(x - h) = [1 / (4 · p)] · (y - k)² (1)
Where:
- (h, k) - Coordinates of the vertex.
- p - Distance from the vertex to the focus.
The distance from the vertex to the focus is 1 / 8. If we know that the location of the vertex is (0, 0), then the <em>standard</em> form of the equation of the parabola is:
x = 2 · y² (1)
The equation of a parabola whose vertex is (0, 0) and focus is (1 / 8, 0) is equal to x = 2 · y².
To learn more on parabolae: brainly.com/question/4074088
#SPJ1
Answer:
I think it would be b
Step-by-step explanation:
im sorry if im wrong im not good with this stuff :c
Answer:
The 99% confidence interval of the population mean for the weights of adult elephants is between 12,475 pounds and 12,637 pounds.
Step-by-step explanation:
We have the standard deviation for the sample, so we use the t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 10 - 1 = 9
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 9 degrees of freedom(y-axis) and a confidence level of
. So we have T = 3.25
The margin of error is:
M = T*s = 3.25*25 = 81
In which s is the standard deviation of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 12,556 - 81 = 12,475 pounds
The upper end of the interval is the sample mean added to M. So it is 12,556 + 81 = 12,637 pounds.
The 99% confidence interval of the population mean for the weights of adult elephants is between 12,475 pounds and 12,637 pounds.
Answer:
30.9 cm^2
Step-by-step explanation:
A=(3*2.6)/2+3*(3*6)/2=3.9+27=30.9 cm^2