Answer:
3 x 10^5 J
Explanation:
mass of substance, m = 1 g = 0.001 kg
Velocity of light, c = 3 x 10^8 m/s
According to the Einstein mass energy equivalence, the energy associated with the mass is given by
E = m c^2
E = 0.001 x 3 x 10^8
E = 3 x 10^5 J
Answer:
a) Due to the characteristic that a converging lens focuses light rays from infinity and parallel to its main axis. Therefore, the lens should be placed at a distance "f" from the film, in this way it will form the image of the object placed at infinity in said film.
b) Since the converging lens produces an image of an object placed at a distance of 2f, the lens must be placed at the same distance (2f), so that this object that is placed at a distance of 2f is focused.
Explanation:
Answer:
- The procedure is: solve the quadratic equation for
.
Explanation:
This question assumes uniformly accelerated motion, for which the distance d a particle travels in time t is given by the general equation:
That is a quadratic equation, where the independent variable is the time
.
Thus, the procedure that will find the time t at which the distance value is known to be D is to solve the quadratic equation for
.
To solve it you start by changing the equation to the general form of the quadratic equations, rearranging the terms:
Some times that equation may be solved by factoring, and always it can be solved by using the quadratic formula:
Where:

That may have two solutions. Some times one of the solution makes no physical sense (for example time cannot be negative) but others the two solutions are valid.