Answer:
They will meet at a distance of 7.57 m
Given:
Initial velocity of policeman in the x- direction, 
The distance between the buildings, 
The building is lower by a height, h = 2.5 m
Solution:
Now,
When the policeman jumps from a height of 2.5 m, then his initial velocity, u was 0.
Thus
From the second eqn of motion, we can write:


t = 0.707 s
Now,
When the policeman was chasing across:


The distance they will meet at:
9.57 - 2.0 = 7.57 m
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.
Answer:
K_a = 8,111 J
Explanation:
This is a collision exercise, let's define the system as formed by the two particles A and B, in this way the forces during the collision are internal and the moment is conserved
initial instant. Just before dropping the particles
p₀ = 0
final moment
p_f = m_a v_a + m_b v_b
p₀ = p_f
0 = m_a v_a + m_b v_b
tells us that
m_a = 8 m_b
0 = 8 m_b v_a + m_b v_b
v_b = - 8 v_a (1)
indicate that the transfer is complete, therefore the kinematic energy is conserved
starting point
Em₀ = K₀ = 73 J
final point. After separating the body
Em_f = K_f = ½ m_a v_a² + ½ m_b v_b²
K₀ = K_f
73 = ½ m_a (v_a² + v_b² / 8)
we substitute equation 1
73 = ½ m_a (v_a² + 8² v_a² / 8)
73 = ½ m_a (9 v_a²)
73/9 = ½ m_a (v_a²) = K_a
K_a = 8,111 J
Why does a satellite in a circular orbit travel at a constant speed? why does a satellite in a circular orbit travel at a constant speed? there is a force acting opposite to the direction of the motion of the satellite. there is no component of force acting along the direction of motion of the satellite. the net force acting on the satellite is zero. the gravitational force acting on the satellite is balanced by the centrifugal force acting on the satellite?
..b.25