Answer:
v₂=- 34 .85 m/s
v₁=0.14 m/s
Explanation:
Given that
m₁=70 kg ,u₁=0 m/s
m₂=0.15 kg ,u₂=35 m/s
Given that collision is elastic .We know that for elastic collision
Lets take their final speed is v₁ and v₂
From momentum conservation
m₁u₁+m₂u₂=m₁v₁+m₂v₂
70 x 0+ 0.15 x 35 = 70 x v₁ + 0.15 x v₂
70 x v₁ + 0.15 x v₂=5.25 --------1
v₂-v₁=u₁-u₂ ( e= 1)
v₂-v₁ = -35 --------2
By solving above equations
v₂=- 34 .85 m/s
v₁=0.14 m/s
The answer to your quesiton is,
A) Venus has phases.
-Mabel <3
Answer:
125.83672 seconds
Explanation:
P = Power of the horse = 1 hp = 746 W (as it is not given we have assumed the horse has the power of 1 hp)
m = Mass of professor = 103 kg
g = Acceleration due to gravity = 9.8 m/s²
h = Height of professor = 93 m
Work done would be equal to the potential energy

Power is given by

The time taken by the horse to pull the professor is 125.83672 seconds
Answer:
(a) A = 1 mm
(b) 
(c) ![a_{max}=606.4 m/s^{2}/tex]Explanation:Distance moved back and forth = 2 mm Frequency, f = 124 HzSo, amplitude is the half of the distance traveled back and forth. (a) So, amplitude, A = 1 mm(b) Angular frequency, ω = 2 π f = 2 x 3.14 x 124 = 778.72 rad/s The formula for the maximum speed is given by [tex]V_{max}=\omega \times A](https://tex.z-dn.net/?f=a_%7Bmax%7D%3D606.4%20m%2Fs%5E%7B2%7D%2Ftex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExplanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3EDistance%20moved%20back%20and%20forth%20%3D%202%20mm%20%3C%2Fp%3E%3Cp%3EFrequency%2C%20f%20%3D%20124%20Hz%3C%2Fp%3E%3Cp%3ESo%2C%20amplitude%20is%20the%20half%20of%20the%20distance%20traveled%20back%20and%20forth.%20%3C%2Fp%3E%3Cp%3E%28a%29%20So%2C%3Cstrong%3E%20amplitude%2C%20A%20%3D%201%20mm%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%28b%29%20Angular%20frequency%2C%20%CF%89%20%3D%202%20%CF%80%20f%20%3D%202%20x%203.14%20x%20124%20%3D%20778.72%20rad%2Fs%20%3C%2Fp%3E%3Cp%3EThe%20formula%20for%20the%20maximum%20speed%20is%20given%20by%20%3C%2Fp%3E%3Cp%3E%5Btex%5DV_%7Bmax%7D%3D%5Comega%20%5Ctimes%20A)


(c) The formula for the maximum acceleration is given by


[tex]a_{max}=606.4 m/s^{2}/tex]
b is the answer there you go if you need the answer