Answer:
The answer is D. The concentrations are different and the reactions are different, so the cell potential is 0.00 volts.
Explanation:
A concentration cell is an electrolytic cell that is comprised of two half-cells with the same electrodes, but differing in concentrations. A concentration cell acts to dilute the more concentrated solution and concentrate the more dilute solution, creating a voltage as the cell reaches an equilibrium.
Answer:
false
Explanation:
this is because , high temperature speeds up the the random motion of particles which leads to high dissolution
Observe the movment of other planets would be your answer
Answer:
I dont think so.
Explanation:
A chemical reaction is when there is a change in the substance. For example fizzing, bubbling, and changing colors are all examples of a chemical reaction.
Answer:
Choice B. The solid with hydrogen bonding.
Assumption: the molecules in the four choices are of similar sizes.
Explanation:
Molecules in a molecular solid are held intact with intermolecular forces. To melt the solid, it is necessary to overcome these forces. The stronger the intermolecular forces, the more energy will be required to overcome these attractions and melt the solid. That corresponds to a high melting point.
For molecules of similar sizes,
- The strength of hydrogen bonding will be stronger than the strength of dipole-dipole attractions.
- The strength of dipole-dipole attractions (also known as permanent dipole) will be stronger than the strength of the induced dipole attractions (also known as London Dispersion Forces.)
That is:
Strength of Hydrogen bond > Strength of Dipole-dipole attractions > Strength of Induced dipole attractions.
Accordingly,
Melting point due to Hydrogen bond > Melting point due to Dipole-dipole attractions > Melting point due to Induced Dipole attractions.
- Induced dipole is possible between all molecules.
- Dipole-dipole force is possible only between polar molecules.
- Hydrogen bonds are possible only in molecules that contain
atoms that are bonded directly to atoms of
,
, or
.
As a result, induced dipoles are the only force possible between molecules of the solid in choice C. Assume that the molecules are of similar sizes, such that the strengths of induced dipole are similar for these molecules.
Melting point in choice B > Melting point in choice D > Melting point in choice A and C.