Answer:
See image attached for structure of CH3Br
Explanation:
A lewis structure structure is a representation of a covalent compound in which dots are used to show valence electrons, lone pairs and bonding electrons. The system was introduced by sir G.N Lewis in 1916 in his article titled 'Atom and Molecule'. They are also called dot electron diagrams of molecules. CH3Br molecule contains a total of fourteen electrons. Valence electrons are shown by dots around the atom of each element as clearly seen in the image attached.
1) The element that will most likely lose electrons to form positive ions when bonding with other elements is rubidium (Rb).
2) The correct statement about sodium atoms is; "The sodium atom transfers electrons to the chlorine atoms to form ionic bonds."
3) Based on their location in the periodic table, nitrogen (N) and oxygen (O) are most likely to form covalent bonds with each other
4) Electronegativity is best described by the phrase; "the relative strength with which an element attracts electrons in a chemical bond"
Metals of group 1 and 2 are highly electropositive and are more likely to loose electrons in a bonding situation. Therefore, the element that will most likely lose electrons to form positive ions when bonding with other elements is rubidium (Rb).
Sodium chloride is an ionic compound. It is formed by transfer of electrons from sodium to chlorine. Sodium is highly electropositive while chlorine is highly electronegative. Therefore, sodium chloride is formed when sodium atom transfers electrons to the chlorine atoms to form ionic bonds.
Covalent bonds are formed between two nonmetals. Nitrogen and oxygen are non metals hence they form covalent bonds.
According to Linus Pauling, electronegativity refers to the ability of an element in a compound to draw electrons towards itself.
Learn more: brainly.com/question/14077687
40. Because sodium chloride is NaCl
Answer:
The answer to your question is P2 = 0.78 atm
Explanation:
Data
Temperature 1 = T1 = 263°K Temperature 2 = T2 = 298°K
Volume 1 = V1 = 24 L Volume 2 = V2 = 35 L
Pressure 1 = P1 = 1 Pressure 2 = P2 = ?
Process
1.- To solve this problem use the Combined gas law
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
-Substitution
P2 = (1)(24)(298) / (263)(35)
-Simplification
P2 = 7152 / 9205
-Result
P2 = 0.777
or P2 = 0.78 atm
The mass number = protons + neutrons. Bromine has a mass number of 80<span> and 35 protons so </span>80<span>-35 = </span>45<span> neutrons. b) How many electrons does the neutral atom of bromine have? The neutral atom of bromine has 35 electrons because the number of electrons equals the number of protons.</span>