Answer:
(a) 7.1 m /sec
(b) 339.9 N/m
(c) 19.91 cm
Explanation:
We have given mass m = 267 gram = 0.267 kg
Time period T = 0.176 sec
Total energy of the oscillating system = 6.74 J
We know that energy is given by
(a) 


(b) Now 
We know that 


(c) We know that energy is given by



As the water plunges, its velocity increases. Its potential energy<span> becomes kinetic</span>energy<span>. The law of conservation of </span>energy<span> states that when one form of </span>energy<span> is</span>transformed<span> to another, no </span>energy<span> is destroyed in the process. ... So the total amount of </span>energy<span> is the same before and after any </span>transformation<span>.
hope it helps
</span>
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s